{ "metadata": { "name": "", "signature": "sha256:996be6d9ddaa0bf73287e9f8387b49ed0c7806d0e7dbe4ba43b1c30f0c65dc07" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "chapter03:Semiconductor Diodes" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 60" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find the value of threshold voltage\n", "#given\n", "t1=25.;#degrees C#initial temperature\n", "t2=100.;#degrees C#final temperature\n", "V=2.*10.**-3.;#V per celsius degree#decrease in barrier potential per degree\n", "V0=0.7#V#Potential at normal temperature\n", "Vd=(t2-t1)*V;#decrease in barrier potential\n", "Vt=V0-Vd;#threshold volatge at 100degree C\n", "print '%s %.2f %s' %(\"Threshold volatge at 100 degrees C =\",Vt,'V');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Threshold volatge at 100 degrees C = 0.55 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#detrenmine dc resistance of silicon diode\n", "#given\n", "#At Id = 2 mA\n", "Id=2.*10.**-3.;#Ampere#diode current\n", "Vd=0.5;#V#voltage(from given curve)\n", "Rf=(Vd/Id);\n", "print '%s %.f %s' %(\"The dc resistance is =\",Rf,\"ohm\\n\");\n", "\n", "#At Id = 20 mA\n", "Id=20.*10.**-3.;#Ampere#diode current\n", "Vd=0.75;#V#voltage(from given curve)\n", "Rf=(Vd/Id);\n", "print '%s %.1f %s' %(\"The dc resistance is =\",Rf,\"ohm\\n\");\n", "\n", "#At Vd = - 10 V \n", "Id=-2.*10.**-6.;#Ampere#diode current(from given curve)\n", "Vd=-10.;#V#voltage\n", "Rf=(Vd/Id);\n", "print '%s %.f %s' %(\"The dc resistance is =\",Rf/10**6,\"M ohm\\n\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dc resistance is = 250 ohm\n", "\n", "The dc resistance is = 37.5 ohm\n", "\n", "The dc resistance is = 5 M ohm\n", "\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 63" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine dc & ac resistance of silicon diode\n", "#given\n", "Id=20.*10.**-3.;#A#diode current\n", "Vd=0.75;#V# as given in the V-I graph\n", "Rf=Vd/Id;\n", "print '%s %.1f %s' %(\"The dc resistance of diode is =\",Rf,\"ohm\\n\");\n", "\n", "#From Graph the values of dynamic voltage and current are\n", "#which is equal to MN and NL repectively (in graph)\n", "del_Vd=(0.8-0.68);#V\n", "del_Id=(40-0)*10.**-3.;#A\n", "rf=del_Vd/del_Id;\n", "print '%s %.f %s' %(\"The ac resistance of the diode is =\",rf,\"ohm\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dc resistance of diode is = 37.5 ohm\n", "\n", "The ac resistance of the diode is = 3 ohm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E4 - Pg 65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine ac resistance of silicon diode\n", "#given\n", "#At Id =10mA\n", "Id=10.;#mA\n", "rf=25./Id;\n", "print '%s %.1f %s' %(\"The ac resistance of the diode is(At Id= 10mA) =\",rf,\"ohm\\n\")\n", "\n", "#At Id =20mA\n", "Id=20.;#mA\n", "rf=25./Id;\n", "print '%s %.2f %s' %(\"The ac resistance of the diode is(At Id= 20mA) =\",rf,\"ohm\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ac resistance of the diode is(At Id= 10mA) = 2.5 ohm\n", "\n", "The ac resistance of the diode is(At Id= 20mA) = 1.25 ohm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E5 - Pg 67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find current through diode\n", "#given\n", "Vt=0.3;#V#Threshold voltage\n", "rf=25.;#ohm# average resistance\n", "\n", "#assuming it to be ideal\n", "#from fig 3.19\n", "Vaa=10.;#V#supply\n", "R1=45.;#ohm\n", "R2=5.;#ohm\n", "Vab=Vaa*R2/(R1+R2);\n", "#Vab>Vt therefore diode is forward bias and no current flow through R2\n", "Idi=Vaa/R1; #for ideal\n", "print '%s %.f %s' %(\"The diode current (for ideal) is =\",Idi*1000,\"mA\\n\");\n", "\n", "#assuming it to be real\n", "#Thevenins equivalent circuit parameters of fig 3.19\n", "Vth=Vaa*R2/(R1+R2);\n", "Rth=R1*R2/(R1+R2);\n", "Idr=(Vth-Vt)/(Rth+rf); #for real\n", "print '%s %.1f %s' %(\"The diode current (for real) is =\",Idr*1000,\"mA\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diode current (for ideal) is = 222 mA\n", "\n", "The diode current (for real) is = 23.7 mA\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E6 - Pg 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find current through resistance in given figure\n", "#From fig\n", "Vaa=20.;#V#supply\n", "Vt=0.7;#V#threshold voltage of diode\n", "rf=5.;#ohm #forward resistance\n", "R=90.;#ohm#given resistor\n", "\n", "#Diode D1 and D4 are forward bias and D2 and D3 are reverse biased\n", "\n", "Vnet=Vaa-Vt-Vt;\n", "Rt=R+rf+rf;\n", "I=Vnet/Rt;\n", "print '%s %.f %s' %(\"Current through 90 ohm resistor is =\",I*1000,\"mA\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current through 90 ohm resistor is = 186 mA\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E7 - Pg 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find current drawn by the battery\n", "#From fig\n", "Vaa=10.;#V#supply\n", "R1=100.;#ohm\n", "R2=100.;#ohm\n", "\n", "#Forward Bias\n", "Id=Vaa/R1;\n", "print '%s %.1f %s' %(\"Current drawn from battery (forward bias) =\",Id,\"A\\n\");\n", "\n", "#Reverse Bias\n", "Rnet=R1+R2;\n", "Id=Vaa/Rnet;\n", "print '%s %.2f %s' %(\"Current drawn from battery (reverse bias) =\",Id,\"A\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current drawn from battery (forward bias) = 0.1 A\n", "\n", "Current drawn from battery (reverse bias) = 0.05 A\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E8 - Pg 79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine dc current through load and rectification efficiency and peak inverse voltage\n", "#given\n", "import math\n", "TR=31./2.;#Turn ratio of the transformer\n", "rf=20.;#ohm#Dynamic forward resistance\n", "Rl=1000.;#ohm#Load resistance\n", "Vt=0.66;#V#Threshold voltage of diode\n", "V=220.;#V#input voltage of transformer\n", "Vp=math.sqrt(2.)*220.#V#peak value of primary voltage\n", "Vm=(1./TR)*Vp;\n", "Im=(Vm-Vt)/(rf+Rl);\n", "Idc=Im/math.pi;\n", "n=40.6/(1.+rf/Rl);\n", "print '%s %.f %s' %(\"The dc current through load is =\",Idc*1000,\"mA\\n\");\n", "print '%s %.1f %s' %(\"The rectification efficiency is =\",n,\"percent\\n\");\n", "print '%s %.2f %s' %(\"Peak inverse voltage =Vm = \",Vm,\"V\\n\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dc current through load is = 6 mA\n", "\n", "The rectification efficiency is = 39.8 percent\n", "\n", "Peak inverse voltage =Vm = 20.07 V\n", "\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E9 - Pg 79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine dc voltage across load and peak inverse voltage across each diode\n", "#given\n", "import math\n", "TR=12./1.##Turn ratio of the transformer\n", "V=220.##V#input voltage of transformer\n", "Vp=math.sqrt(2.)*220.#V#peak value of primary voltage\n", "Vm=(1./TR)*Vp#\n", "Vdc=(2.*Vm)/math.pi#\n", "print '%s %.1f %s' %(\"The dc voltage across load =\",Vdc,\"V\\n\")#\n", "print '%s %.1f %s' %(\"Peak inverse voltage (for bridge rectifier) =\",Vm,\"V\\n\")#\n", "print '%s %.1f %s' %(\"Peak inverse voltage (for centre tap rectifier) =\",2*Vm,\"V\\n\")#\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dc voltage across load = 16.5 V\n", "\n", "Peak inverse voltage (for bridge rectifier) = 25.9 V\n", "\n", "Peak inverse voltage (for centre tap rectifier) = 51.9 V\n", "\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E10 - Pg 80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find dc power supplied to load and efficiency and PIV rating of the diode\n", "#given\n", "import math\n", "rf=2.;#ohm#Dynamic forward resistance\n", "Rs=5.;#ohm#resistaqnce of secondary\n", "Rl=25.;#ohm#Load resistance\n", "Idc=0.1;#A#dc current to a load\n", "Pdc=Idc**2.*Rl; #dc power\n", "n=(81.2*Rl)/(Rl+rf+Rs); #efficiency\n", "Im=(math.pi*Idc)/2.; #peak value current\n", "Vm=Im*(Rl+rf+Rs); #peak voltage\n", "Vlm=Vm-Im*(rf+Rs); #peak voltage across load\n", "PIV=Vm+Vlm;\n", "print '%s %.2f %s' %(\"The dc power supplied to the load is =\",Pdc,'W\\n');\n", "print '%s %.2f %s' %(\"Efficiency =\",n,'percent\\n');\n", "print '%s %.3f %s' %(\"The peak inverse voltage is =\",PIV,'V');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dc power supplied to the load is = 0.25 W\n", "\n", "Efficiency = 63.44 percent\n", "\n", "The peak inverse voltage is = 8.954 V\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E11 - Pg 87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate output voltage and current through load and voltage across series resistor and current and power dissipated in zener diode\n", "#given\n", "Vi=110.;#V #input voltage\n", "Rl=6.*10.**3.;# ohm #load resistance\n", "Rs=2.*10.**3.;#ohm #series resistance\n", "Vz=60.;#V #Zener voltage\n", "V=Vi*Rl/(Rs+Rl);\n", "\n", "#This V>Vz therefore Zener diode is ON\n", "\n", "Vo=Vz; #output voltage\n", "Il=Vo/Rl; #Current through load resistance\n", "Vs=Vi-Vo; #Voltage drop across the series resistor\n", "Is=Vs/Rs #current through the series resistor\n", "Iz=Is-Il #/By applying kirchhoffs law\n", "Pz=Vz*Iz #Power dissipated accross zener diode\n", "\n", "print '%s %.f %s' %(\"The output voltage is =\",Vo,\"V\\n\");\n", "print '%s %.f %s' %(\"The current through load resistance is =\",Il*1000,\"mA\\n\");\n", "print '%s %.f %s' %(\"Voltage across series resistor is =\",Vs,\"V\\n\")\n", "print '%s %.f %s' %(\"Current in zener diode is =\",Iz*1000,\"mA\\n\")\n", "print '%s %.f %s' %(\"Power dissipated by zener diode =\",Pz*1000,'mW');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output voltage is = 60 V\n", "\n", "The current through load resistance is = 10 mA\n", "\n", "Voltage across series resistor is = 50 V\n", "\n", "Current in zener diode is = 15 mA\n", "\n", "Power dissipated by zener diode = 900 mW\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E12 - Pg 88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Calculate max and min values of zener diode current\n", "#given\n", "Vimin=80.;#V #minimum input voltage\n", "Vimax=120.;#V #maximum input voltage\n", "Rl=10.*10.**3.;# ohm #load resistance\n", "Rs=5.*10.**3.;#ohm #series resistance\n", "Vz=50.;#V #Zener voltage\n", "V=Vimin*Rl/(Rs+Rl);\n", "\n", "#This V>Vz therefore Zener diode is ON\n", "\n", "#For minimum value of zener diode\n", "\n", "Vo=Vz; #output voltage\n", "Vs=Vimin-Vo; #Voltage drop across the series resistor\n", "Is=Vs/Rs #current through the series resistor\n", "Il=Vo/Rl; #Current through load resistance\n", "Izmin=Is-Il;\n", "print '%s %.f %s' %(\"Minimum values of zener diode current is =\",Izmin*1000,\"mA\\n\");\n", "\n", "#For maximum value of zener diode\n", "\n", "Vo=Vz; #output voltage\n", "Vs=Vimax-Vo; #Voltage drop across the series resistor\n", "Is=Vs/Rs #current through the series resistor\n", "Il=Vo/Rl; #Current through load resistance\n", "Izmax=Is-Il;\n", "print '%s %.f %s' %(\"Maximum values of zener diode current is =\",Izmax*1000,\"mA\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum values of zener diode current is = 1 mA\n", "\n", "Maximum values of zener diode current is = 9 mA\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E13 - Pg 88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine value of the series resistor and wattage rating\n", "#given\n", "Vi=12.##V #input voltage\n", "Vz=7.2##V #Zener voltage\n", "Izmin=10.*10.**-3.##A #min current through zener diode\n", "Ilmax=100*10.**-3.##A #max current through load\n", "Ilmin=12.*10.**-3.##A #min current through load\n", "Vs=Vi-Vz# #Voltage drop across the series resistor\n", "Is=Izmin+Ilmax# #Current through the series resistor\n", "Rs=Vs/Is#\n", "print '%s %.1f %s' %(\"The series resistor so that 10mA current flow through zener diode is =\",Rs,\"ohm\\n\")#\n", "Izmax=Is-Ilmin#max zener through zener diode\n", "Pmax=Izmax*Vz#\n", "print '%s %.1f %s' %(\"The maximum wattage rating is =\",Pmax*1000,\"mW\")#\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The series resistor so that 10mA current flow through zener diode is = 43.6 ohm\n", "\n", "The maximum wattage rating is = 705.6 mW\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E14 - Pg 90" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find the capacitance of a varactor diode\n", "#given\n", "import math\n", "C=5.;#pf#capcitance of varactor diode at V=4V\n", "V=4.;#V\n", "K=C*math.sqrt(4.);\n", "#When bias voltage is increased upto 6 V\n", "Vn=6.;#V#new bias voltage\n", "Cn=K/(math.sqrt(Vn));\n", "print '%s %.3f %s' %(\"Capacitance (At 6 V ) =\",Cn,\"pf\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance (At 6 V ) = 4.082 pf\n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }