{ "metadata": { "name": "", "signature": "sha256:9f145e3575abf583b905671dc9c265339855396c0056b7d05cbca68c581ff19b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11 - Tuned Volatge AMplifiers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 401" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate frequency and impedance and current and voltage across each element at resonance\n", "#given\n", "import math\n", "R=12.;#ohm\n", "L=200.*10.**-6.;#H\n", "C=300.*10.**-12.;#F\n", "Vs=9.;#V\n", "fo=1./(2.*math.pi*math.sqrt(L*C));\n", "Z=R;#impedance\n", "print '%s %.1f %s' %(\"The Resonant frequency =\",fo/1000,\"kHz\\n\");\n", "print '%s %.f %s' %(\"The impedance Z =\",Z,\"ohm\\n\");\n", "\n", "Io=Vs/R;\n", "print '%s %.2f %s' %(\"The Source current =\",Io,\"A\\n\");\n", "\n", "Vl=Io*(2.*math.pi*fo*L);\n", "Vc=Io/(2.*math.pi*fo*C);\n", "Vr=Io*R;\n", "print '%s %.1f %s' %(\"The voltage across the inductor =\",Vl,\"V\\n\");\n", "print '%s %.1f %s' %(\"The voltage across the capacitor =\",Vc,\"V\\n\");\n", "print '%s %.f %s' %(\"The voltage across the resistor =\",Vr,\"V\\n\");\n", "#There is a slight variation in voltage across capacitor due to the approaximation\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Resonant frequency = 649.7 kHz\n", "\n", "The impedance Z = 12 ohm\n", "\n", "The Source current = 0.75 A\n", "\n", "The voltage across the inductor = 612.4 V\n", "\n", "The voltage across the capacitor = 612.4 V\n", "\n", "The voltage across the resistor = 9 V\n", "\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 401" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate frequency and impedance and current at resonance and current in coil and capacitor\n", "#given\n", "import math\n", "R=10.;#ohm\n", "L=100.*10.**-6.;#H\n", "C=100.*10.**-12.;#F\n", "Vs=10.;#V\n", "fo=1./(2.*math.pi*math.sqrt(L*C));\n", "Zp=L/(C*R); #impedance\n", "print '%s %.3f %s' %(\"The Resonant frequency =\",fo/10**6,\"MHz\\n\");\n", "print '%s %.f %s' %(\"The impedance Z =\",Zp/1000,\"kohm\\n\");\n", "\n", "Io=Vs/Zp;\n", "print '%s %.f %s' %(\"The Source current =\",Io*10**6,\"uA\\n\");\n", "\n", "Xl=(2.*math.pi*fo*L);\n", "Xc=1./(2.*math.pi*fo*C);\n", "Z1=math.sqrt(Xl**2.+R**2.);\n", "Z2=Xc;\n", "Ic=Vs/Z2;\n", "Il=Ic;\n", "print '%s %.f %s' %(\"The current in the coil =\",1000,\"ohm\\n\");\n", "print '%s %.f %s' %(\"The current in the capacitor =\",Ic*1000,\"mA\\n\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Resonant frequency = 1.592 MHz\n", "\n", "The impedance Z = 100 kohm\n", "\n", "The Source current = 100 uA\n", "\n", "The current in the coil = 1000 ohm\n", "\n", "The current in the capacitor = 10 mA\n", "\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 402" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate impedance and quality factor and bandwidth\n", "#given\n", "import math\n", "R=10.;#ohm\n", "L=150.*10.**-6.;#H\n", "C=100.*10.**-12.;#F\n", "fo=1/(2.*math.pi*math.sqrt(L*C));\n", "Zp=L/(C*R); #impedance\n", "print '%s %.f %s' %(\"The impedance Z =\",Zp/1000,\"kohm\\n\");\n", "\n", "Xl=(2.*math.pi*fo*L);\n", "Q=Xl/R;\n", "BW=fo/Q;\n", "print '%s %.1f %s' %(\"The Quality factor of the circuit =\",Q,\"\\n\");\n", "print '%s %.1f %s' %(\"The Band width of the circuit =\",BW/1000,\"kHz\\n\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The impedance Z = 150 kohm\n", "\n", "The Quality factor of the circuit = 122.5 \n", "\n", "The Band width of the circuit = 10.6 kHz\n", "\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }