{ "metadata": { "name": "", "signature": "sha256:22a4fbff9c8897e342a78bd9c8e48f9f093d2131b002f5667d92f4929ec8b5e4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter14:Operational Amplifiers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 474" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate voltage gain and input and output resistance\n", "#given\n", "R1=20.*10.**3.;#ohm\n", "Rf=2000.*10.**3.;#ohm\n", "Acl=-Rf/R1;\n", "Ricl=R1;\n", "Ro=0;\n", "print '%s %.f %s' %(\"The voltage gain =\",Acl,\"\\n\");\n", "print '%s %.f %s' %(\"The input resistance =\",R1/1000,\"kohm\\n\");\n", "print '%s %.f %s' %(\"The output resistance =\",Ro,\"ohm\\n\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The voltage gain = -100 \n", "\n", "The input resistance = 20 kohm\n", "\n", "The output resistance = 0 ohm\n", "\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 474" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find the output voltage\n", "#given\n", "R1=20.*10.**3.;#ohm\n", "Rf=2000.*10.**3.;#ohm\n", "v1=4.;#V\n", "v2=3.8;#V\n", "vo=v2*(1.+Rf/R1)-(Rf/R1)*v1;\n", "print '%s %.1f %s' %(\"The output voltage =\",vo,\"V\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output voltage = -16.2 V\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E4 - Pg 475" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Design an adder circuit using an op amp\n", "#given\n", "#Vo=-(V1+10*V2+100*V3)\n", "Rf=100.*10.**3.;#ohm\n", "C1=1.;#coefficient of V1\n", "C2=10.;#coefficient of V2\n", "C3=100.;#coefficient of V3\n", "R1=Rf/C1;\n", "R2=Rf/C2;\n", "R3=Rf/C3;\n", "print '%s %.f %s' %(\"R1 =\",R1/1000,\"kohm\\n\");\n", "print '%s %.f %s' %(\"R2 =\",R2/1000,\"kohm\\n\");\n", "print '%s %.f %s' %(\"R3 =\",R3/1000,\"kohm\\n\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R1 = 100 kohm\n", "\n", "R2 = 10 kohm\n", "\n", "R3 = 1 kohm\n", "\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E5 - Pg 484" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate CMRR in dB\n", "#given\n", "import math\n", "Ad=100.;#differential mode gain\n", "Ac=0.01;#common mode gain\n", "CMRR=20.*math.log10(Ad/Ac);\n", "print '%s %.f %s' %(\"The CMRR in dB =\",CMRR,\"dB\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The CMRR in dB = 80 dB\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E6 - Pg 484" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the output voltage\n", "#given\n", "Ad=2000.;#differential mode gain\n", "CMRR=10000.;\n", "V1=10.**-3.;#V\n", "V2=0.9*10.**-3.;#V\n", "Vd=V1-V2;\n", "Vc=(V1+V2)/2.;\n", "Vo=Ad*Vd*(1.+Vc/(CMRR*Vd));\n", "print '%s %.2f %s' %(\"The output voltage is =\",Vo*1000,\"mV\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output voltage is = 200.19 mV\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }