{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 19 : Power amplifiers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.1, Page No 810" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "Rpy=40.0\n", "N1=74.0\n", "N2=14.0\n", "R2=3.7*10**3\n", "R1=4.7*10**3\n", "Vbe=0.7\n", "Re=1.0*10**3\n", "Vcc=13.0\n", "Rl=56.0\n", "\n", "#Calculations\n", "print(\"Q-point\")\n", "Vb=Vcc*(R2/(R1+R2))\n", "Ic=(Vb-Vbe)/Re\n", "Ie=Ic\n", "Vce=Vcc-Ic*(Rpy+Re)\n", "rl=(N1/N2)**2 *Rl\n", "rl=rl+Rpy\n", "Ic=5*10**-3\n", "Vce=Ic*rl\n", "\n", "#Results\n", "print(\"The value of Vce is %.2f v \" %Vce)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Q-point\n", "The value of Vce is 8.02 v \n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.2, Page No 814" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "Vcc=13.0\n", "Icq=5.0*10**-3\n", "Vceq=8.0\n", "Vp=Vceq\n", "Ip=Icq\n", "nt=0.8\n", "\n", "#Calculations\n", "Pi=Vcc*Icq\n", "Po=.5*Vp*Ip\n", "P0=nt*Po\n", "n=(P0/Pi)*100.0\n", "\n", "#Results\n", "print(\" maximum efficiency is %3.2f percentage \" %n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " maximum efficiency is 24.62 percentage \n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.4 Page No 821" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "N1=60.0\n", "N2=10.0\n", "Rl=16.0\n", "Rpy=0\n", "R6=56.0\n", "Vcc=27.0\n", "Vce=0.5\n", "n=0.79\n", "\n", "#Calculations\n", "print(\" Referred laod\")\n", "rl=(N1/N2)**2 *Rl\n", "print(\" tatol ac load line in series with each of Q2 and Q3\")\n", "Rl=rl+R6+Rpy\n", "print(\" peak primary current\")\n", "Ip=(Vcc-Vce)/Rl\n", "print(\"peak primary voltage\")\n", "Vp=Vcc-Vce-(Ip*R6)\n", "print(\"power delivered to primary\")\n", "Po=.5*Vp*Ip\n", "\n", "#Calculations\n", "Po=Po*n#n is power efficiency\n", "print(\"power delivered to the load %.2f W \" %Po)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Referred laod\n", " tatol ac load line in series with each of Q2 and Q3\n", " peak primary current\n", "peak primary voltage\n", "power delivered to primary\n", "power delivered to the load 0.40 W \n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.5, Page No 824" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Po=4.0\n", "nt=0.8\n", "Vcc=30.0\n", "Vp=Vcc\n", "Rl=16.0\n", "\n", "#Calculations\n", "P0=Po/nt\n", "rl=(Vp)**2 /(2*P0)\n", "rl=4*rl\n", "print(\"transformer specification Po=4 %Rl=16 rl=360\")\n", "Vce=2.0*Vcc\n", "Ip=(2.0*P0)/Vp\n", "Pi=Vcc*.636*Ip\n", "Pt=0.5*(Pi-P0)\n", "\n", "#Results\n", "print(\" transistor specification is Py=.68W Vce=60 Ip=333mA\")\n", "print(\"power delivered to the load Pi = %.2f W \" %Pi)\n", "print(\"power delivered to the load Pt = %.2f W \" %Pt)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "transformer specification Po=4 %Rl=16 rl=360\n", " transistor specification is Py=.68W Vce=60 Ip=333mA\n", "power delivered to the load Pi = 6.36 W \n", "power delivered to the load Pt = 0.68 W \n" ] } ], "prompt_number": 47 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.6 Page No 830" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Rl=50.0\n", "Po=1.0\n", "hFE=50.0\n", "Vbe=0.7\n", "Vrc=4.0\n", "Vre=1.0\n", "Vd1=0.7\n", "\n", "#Calculations\n", "Vd2=Vd1\n", "Vp=math.sqrt(2*Rl*Po)\n", "Ip=Vp/Rl\n", "Re3=.1*Rl\n", "Re2=4.7#use stabdard value\n", "Re2=Re3\n", "Icq=.1*Ip\n", "Vb=Vbe+Icq*(Re2+Re3)+Vbe\n", "Vc1=Vrc\n", "Ib2=Ip/hFE\n", "Irc=Ib2+1*10**-3\n", "Rc=Vrc/Irc\n", "Rc=680.0 #use standard value\n", "Vcc=2.0*(Vp+Vre+Vbe+Vrc)\n", "Vcc=32#use standard value\n", "Vrcdc=.5*(Vcc-Vb)\n", "Ic1=Vrcdc/Rc\n", "Rb=(Vb-Vd1-Vd2)/Ic1\n", "\n", "#Results\n", "print(\"The value of Rb is %.2f kOhm \" %Rb)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Rb is 8.95 kOhm \n" ] } ], "prompt_number": 48 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.7 Page No 832" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "Vcc=32.0\n", "Vce=32.0\n", "Ip=200.0*10**-3\n", "Po=1.0\n", "\n", "#Calculations\n", "Ic=1.1*Ip\n", "Pi=0.35*Vcc*Ip\n", "Pt=0.5*(Pi-Po)\n", "\n", "#Results\n", "print(\"power delivered to the load Pi = %.2f \" %Pi)\n", "print(\"power delivered to the load Pt = %.2f \" %Pt)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "power delivered to the load Pi = 2.24 \n", "power delivered to the load Pt = 0.62 \n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.8, Page No 832" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "f=50.0\n", "hib=2.0\n", "Rl=50.0\n", "\n", "#Calculations\n", "Ce=1.0/(2*3.14*f*hib)\n", "Co=1.0/(2*3.14*50*.1*Rl)\n", "\n", "#Results\n", "print(\"The value of Ce is %.2f pF \" %(Ce*10**3))\n", "print(\"The value of Co is %.2f pF \" %(Co*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Ce is 1.59 pF \n", "The value of Co is 0.64 pF \n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.9 Page No 834" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "hFE=2000.0\n", "Vbe=1.4\n", "Vp=10.0\n", "Ip=200.0*10**-3\n", "Icq2=20.0*10**-3\n", "Re3=4.7\n", "Re2=4.7\n", "Vd=0.7\n", "Ve1=3.0\n", "Vc1=15.2\n", "\n", "#Calculations\n", "Vrc=Vc1\n", "Vb=Vbe+Icq*(Re2+Re3)+Vbe\n", "Vcc=Vrc+Vc1+Vb\n", "Ib2=Ip/hFE\n", "Irc=1.0*10**-3\n", "Vrcac=4.0\n", "Rc=Vrcac/Irc\n", "Ic1=Vrc/Rc\n", "Rb=(Vb-(4*Vd))/Ic1\n", "\n", "#Results\n", "print(\"The value of Rb is %.2f kohm \" %Rb)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Rb is 49.47 kohm \n" ] } ], "prompt_number": 51 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.10 Page No 838" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vb=3.2\n", "Ic1=5*10**-3\n", "Vce=3.2\n", "Vbe=0.7\n", "\n", "#Calculations\n", "Vbmin=Vb-0.5\n", "Vbmax=Vb+0.5\n", "I10=.1*Ic1\n", "R10=(Vce-Vbe)/I10\n", "R10=4.7*10**3#use standard value\n", "print(\" for Vce=3.7\")\n", "Vce=3.7\n", "I10max=(Vce-Vbe)/R10\n", "print(\"Vce=2.7V\")\n", "Vce=2.7\n", "I10min=(Vce-Vbe)/R10\n", "R=Vbe/I10min\n", "R11=Vbe/I10max\n", "R12=R-R11\n", "\n", "#Results\n", "print(\"The value of R12 is %.2f kohm \" %R12)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " for Vce=3.7\n", "Vce=2.7V\n", "The value of R12 is 548.33 kohm \n" ] } ], "prompt_number": 52 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.11 Page No 843" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "Rl=16.0\n", "Po=6.0\n", "Vbe=0.7\n", "\n", "#Calculations\n", "Vp=math.sqrt(2.0*Rl*Po)\n", "Vr14=0.1*Vp\n", "Vr15=Vr14\n", "R14=0.1*Rl\n", "R15=R14\n", "Vce3=1.0\n", "Vce4=Vce3\n", "Vr9=3.0\n", "Vr11=Vr9\n", "Vcc=(Vp+Vr14+Vbe+Vce3+Vr9)\n", "Vee=-Vcc\n", "Ip=Vp/Rl\n", "print(\" DC power inpit from supply line\")\n", "Pi=(Vcc-Vee)*.35*Ip\n", "Pt=.5*(Pi-Po)\n", "Vce=2*Vcc\n", "Ic=1.1*Ip\n", "\n", "#Results\n", "print(\" output transistor specification %.2f mA\" %Ic)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " DC power inpit from supply line\n", " output transistor specification 0.95 mA\n" ] } ], "prompt_number": 53 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.12, Page No 844" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "hFE7=20.0\n", "Icbo=50.0*10**-6\n", "hFE5=70.0\n", "Vr9=3.0\n", "Ip=869.0*10**-3\n", "R15=1.5\n", "R8=15.0*10**3\n", "Vbe=0.7\n", "Vr11=3.0\n", "Vee=20.0\n", "\n", "#Calculations\n", "R12=0.01/Icbo\n", "R12=220#use standard value\n", "R13=R12\n", "Ib5=Ip/(hFE7*hFE5)\n", "Ic3=2.0*10**-3\n", "R9=Vr9/Ic3\n", "R11=R9\n", "Iq78=0.1*Ip\n", "Vr14=Iq78*R15\n", "Vr15=Vr14\n", "Vr10=(Vr14+Vr15)+(Vr14+Vr15)/2\n", "R10=Vr10/Ic3\n", "Ir8=(Vr11+Vbe)/R8\n", "R7=(Vee-(Vr11+Vbe))/Ir8\n", "\n", "#Results\n", "print(\"The value of R7 is %.2f kohm \" %(R7/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R7 is 66.08 kohm \n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.13, Page No 848" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Rl=20.0\n", "Po=2.5\n", "Rd=4.0\n", "Vr6=1.0\n", "Vr9=Vr6\n", "Vth=1.0\n", "gFS=250.0*10**-3\n", "Vbe=0.7\n", "\n", "#Calculations\n", "Vp=math.sqrt(2*Rl*Po)\n", "Ip=Vp/Rl\n", "Vcc=(Vp+Ip*Rd)\n", "vr6=Ip/gFS\n", "Vr2=vr6+1\n", "Vce=Vr2\n", "Vce3=1.0\n", "Vr2=Vcc-Vce\n", "Vee=Vcc\n", "Vr3=Vee-Vbe\n", "Vr7=Vr2-Vr6\n", "Vr8=Vcc-(-Vee)-Vr6-Vr7-Vr9\n", "\n", "#Results\n", "print(\"The value of Vr8 is %.2f V \" %Vr8)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Vr8 is 14.00 V \n" ] } ], "prompt_number": 55 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.14, Page No 849" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "R6=100.0*10**3\n", "R9=R6\n", "Vth=1.0\n", "Vr7=8.0\n", "Vr8=14.0\n", "Vr3=11.3\n", "Vpout=10.0\n", "Vpin=800.0*10**-3\n", "\n", "#Calculations\n", "I6=Vth/R6\n", "R7=Vr7/I6\n", "R8=Vr8/I6\n", "Ic1=1*10**-4\n", "Ic2=Ic1\n", "Vr2=9\n", "R2=Vr2/Ic1\n", "R3=Vr3/(Ic1+Ic2)\n", "R5=4.7*10**3\n", "Acl=Vpout/Vpin\n", "R4=R5/(Acl-1.0)\n", "\n", "#Results\n", "print(\"The value of R4 is %.2f kohm \" %(R4/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R4 is 0.41 kohm \n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.15, Page No 854" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Vce=1.5\n", "Vcc=17.0\n", "Vd1=0.7\n", "R8=1.5*10**3\n", "R9=R8\n", "Rl=100.0\n", "R6=8.2\n", "\n", "#Calculations\n", "I4=(Vcc-Vd1)/(R8+R9)\n", "Vc3=Vcc-(I4*R8)\n", "print(\" bootstrap capacitance terminal voltage is %3.1fV \" %Vc3)\n", "V=Vcc-Vce#V=Vp+Vr6\n", "Ip=V/(Rl+R6)\n", "Vp=Ip*Rl\n", "print(\" peak output voltage is %3.1fV \" %Vp)\n", "Po=(Vp)**2.0/(2.0*Rl)\n", "\n", "#Results\n", "print(\" peak output power is %dW \" %Po)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " bootstrap capacitance terminal voltage is 8.8V \n", " peak output voltage is 14.3V \n", " peak output power is 1W \n" ] } ], "prompt_number": 57 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.16, Page No 856" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Rl=8.0\n", "Po=6.0\n", "vs=0.1\n", "hFE=1000.0\n", "Vce=2.0\n", "f=50.0*10**3\n", "Vd1=0.7\n", "\n", "#Calculations\n", "Vp=math.sqrt(2*Rl*Po)\n", "Ip=Vp/Rl\n", "R6=.1*Rl\n", "R7=R6\n", "Vcc=Vp+Ip*R6+Vce\n", "Ib=Ip/hFE\n", "I4=2*10**-3\n", "R4=(Vcc-Vd1-Vd1)/I4\n", "R8=.5*R4\n", "Acl=Vp/vs\n", "R3=100*10**3\n", "R2=R3/(Acl-1)\n", "SR=(2*3.14*f*Vp)*10**-6\n", "\n", "#Results\n", "print(\" slew rate is %.2f V/us \" %SR)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " slew rate is 3.08 V/us \n" ] } ], "prompt_number": 58 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.17, Page No 856" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "f=50.0\n", "R1=100.0*10**3\n", "R2=1.0*10**3\n", "R8=2.7*10**3\n", "\n", "#Calculations\n", "R9=R8\n", "C1=1/(2*3.14*f*.1*R1)\n", "C2=1/(2*3.14*f*R2)\n", "Xc3=.1*((R8*R9)/(R8+R9))\n", "C3=1/(2*3.14*f*Xc3)\n", "C4=C3\n", "\n", "#Results\n", "print(\"The value of C4 is %.2f pF \" %(C4*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of C4 is 23.59 pF \n" ] } ], "prompt_number": 59 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.18, Page No 860" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Ismin=1.8*10**-3\n", "Ismax=3.4*10**-3\n", "R7=820.0\n", "R5=390.0\n", "R6=18.0*10**3\n", "Vi=100.0*10**-3\n", "Rl=10.0\n", "\n", "#Calculations\n", "Vgsmin=Ismin*R7\n", "Vgsmax=Ismax*R7\n", "Acl=(R5+R6)/R5\n", "Vp=Acl*Vi\n", "Ip=Vp/Rl\n", "print(\"peak output current is %3.3fA \" %Ip)\n", "Po=(Vp*Ip)/2.0\n", "\n", "#Results\n", "print(\"peak output power is %3.2fW \" %Po)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "peak output current is 0.472A \n", "peak output power is 1.11W \n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19, Page No 862" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Vbe=0.7\n", "R2=560.0\n", "R3min=0\n", "R3max=1.0*10**3\n", "Is=2.0*10**-3\n", "\n", "#Calculations\n", "Ic2max=Vbe/(R2+R3min)\n", "Ic2min=Vbe/(R2+R3max)\n", "Vgsmin=(Is+Ic2min)*820.0\n", "Vgsmax=(Is+Ic2max)*820.0\n", "\n", "#Results\n", "print(\"The value of Vgsmax is %.2f v \" %Vgsmax)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Vgsmax is 2.67 v \n" ] } ], "prompt_number": 61 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.20, Page No 865" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Vcc=12.0\n", "Rl=10.0\n", "Rd=0.5\n", "gfs=2.5\n", "R7=820.0\n", "V9=1.0*10**3\n", "\n", "#Calculations\n", "R10=R9\n", "Vp=(Vcc*Rl)/(Rd+Rl)\n", "Ip=Vp/Rl\n", "Vgs=Ip/gfs\n", "Vr7=Is*R7\n", "Vs=Vcc-Vr7-Vgs\n", "Vr9=(Vp*R9)/(R9+R10)\n", "\n", "#Results\n", "print(\"op-amp peak output voltage is %.2f v \" %Vr9)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "op-amp peak output voltage is 5.71 v \n" ] } ], "prompt_number": 62 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.21, Page No 867" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vbe=0.7\n", "R2=470.0\n", "R3=1.0*10**3\n", "Is=0.5*10**-3\n", "R7=1.5*10**3\n", "Vcc=15\n", "\n", "#Calculations\n", "Ic2max=Vbe/R2\n", "Ic2min=Vbe/(R2+R3)\n", "Vgs=(Is+Ic2max)*R7\n", "print(\" MOSFET maximum gate source voltage is %.1fV \" %Vgs)\n", "Vs=Vcc-Vgs\n", "\n", "#Results\n", "print(\" op-amp minimum suppy is %.2fV \" %Vs)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " MOSFET maximum gate source voltage is 3.0V \n", " op-amp minimum suppy is 12.02V \n" ] } ], "prompt_number": 63 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.22, Page No 868" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vcc=15.0\n", "Rl=15.0\n", "Rd=0.3\n", "R5=2.2*10**3\n", "R6=33.0*10**3\n", "C2=3.9*10**-6\n", "C4=100.0*10**-12\n", "\n", "#Calculations\n", "print(\" power output\")\n", "Vp=(Vcc*Rl)/(Rd+Rl)\n", "Ip=Vp/Rl\n", "Po=(Vp*Ip)/2.0\n", "print(\" voltage gain\")\n", "Av=(R5+R6)/R5\n", "print(\"cutoff frequency\")\n", "f1=1.0/(2*3.14*C2*R5)\n", "f2=1.0/(2*3.14*C4*R6)\n", "\n", "#Results\n", "print(\" cutoff frequency f1 %.2f \" %f1)\n", "print(\" cutoff frequency f2 %.2f \" %f2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " power output\n", " voltage gain\n", "cutoff frequency\n", " cutoff frequency f1 18.56 \n", " cutoff frequency f2 48253.23 \n" ] } ], "prompt_number": 64 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.23, Page No 871" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vcc=23.0\n", "Rl=8.0\n", "Rf2=100.0*10**3\n", "Rf1=5.6*10**3\n", "Cf=1.0*10**-6\n", "Vp=Vcc-5\n", "\n", "#Calculations\n", "Po=(Vp)**2/(2*Rl)\n", "print(\"maximum output power is %3.2fW \" %Po)\n", "Acl=(Rf1+Rf2)/Rf1\n", "print(\" voltage gain %3.1f \" %Acl)\n", "f=1/(2*3.14*Cf*Rf1)\n", "\n", "#Results\n", "print(\"lower cutoff frequency is %dHz \" %f)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum output power is 20.25W \n", " voltage gain 18.9 \n", "lower cutoff frequency is 28Hz \n" ] } ], "prompt_number": 65 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.24, Page No 875" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Rf=15.0*10**3\n", "R1=5.6*10**3\n", "vs=0.5\n", "Vp=2.7\n", "\n", "#Calculations\n", "Acl=(2.0*Rf)/R1\n", "Vo=Acl*vs\n", "Po=(Vp)**2.0/(2.0*Rl)\n", "\n", "#Results\n", "print(\"load power dissipation is %.2fW \" %Po)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "load power dissipation is 0.46W \n" ] } ], "prompt_number": 66 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.24, Page No 875" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vcc=10.0\n", "Rl=1.0*10**3\n", "f=3.0*10**6\n", "Ip=25.0*10**-3\n", "Vce=0.3\n", "\n", "#Calculations\n", "Vp=Vcc-Vce\n", "Po=(Vp)**2 /(2*Rl)\n", "T=1.0/f\n", "t=(Po*T)/(Ip*Vp)\n", "angle=(t/T)*360\n", "print(\" conduction angle is %3.1fdegree \" %angle)\n", "Idc=Po/Vp\n", "Pi=Vcc*Idc\n", "print( \"dc input power is %3.4fW \" %Pi)\n", "n=(Po/Pi)*100#efficiency\n", "\n", "#Results\n", "print(\" maximum efficiency is %3.2f percentage \" %n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " conduction angle is 69.8degree \n", "dc input power is 0.0485W \n", " maximum efficiency is 97.00 percentage \n" ] } ], "prompt_number": 67 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.26, Page No 882" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "f=1.0*10**6\n", "Xc=120.0\n", "Vce=0.5\n", "Vcc=30.0\n", "Rl=1.2*10**3\n", "O=100.0\n", "\n", "#Calculations\n", "Cp=1.0/(2*3.14*f*Xc)\n", "Cp=1300*10**-12#use standard value\n", "Lp=1/(((2*3.14*f)**2)*Cp)\n", "Vp=Vcc-Vce\n", "Po=((Vp)**2) /(2*Rl)\n", "Idc=Po/Vp\n", "T=1.0/f\n", "t=(O*T)/360.0\n", "Ip=(Idc*T)/t\n", "\n", "#Results\n", "print(\"The value of Ip is %.2f mA \" %(Ip*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Ip is 44.25 mA \n" ] } ], "prompt_number": 68 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.27, Page No 883" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Rw=0.1\n", "f=1.0*10**6\n", "Lp=19.5*10**-6\n", "Rl=1.2*10**3\n", "Vcc=30.0\n", "\n", "#Calculations\n", "Idc=12.3*10**-3\n", "QL=(2*3.14*f*Lp)/Rw\n", "Qp=Rl/(2*3.14*f*Lp)\n", "B=f/Qp\n", "Il=(.707*Vp)/(2*3.14*f*Lp)\n", "Pl=(Il)**2 *Rw\n", "Pi=(Vcc*Idc)+Pl\n", "n=(Po/Pi)*100.0\n", "\n", "#Results\n", "print(\" maximum efficiency is %3.2f percentage \" %n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " maximum efficiency is 97.50 percentage \n" ] } ], "prompt_number": 69 } ], "metadata": {} } ] }