{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 16 : Signal generators" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.1, Page No 668" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Vcc=10.0\n", "Ib=500.0*10**-9\n", "Acl=29.0\n", "f=1.0*10**3\n", "\n", "#Calculations\n", "print(\" phase shift oscillator\")\n", "I1=100*Ib\n", "vo=Vcc-1\n", "vi=vo/Acl\n", "R1=vi/I1\n", "R1=5.6*10**3#use standard value 5.6Kohm\n", "R2=Acl*R1\n", "R2=180*10**3#use satndard value 180Kohm to give Acl>180\n", "R3=R2R=R1\n", "C=1.0/(2*3.14*R3*f*math.sqrt(6))\n", "\n", "#Results\n", "print(\"The value of C = %.2f \" %(C*10**9))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " phase shift oscillator\n", "The value of C = 11.61 \n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.2, Page No 672" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "f=40.0*10**3\n", "L=100.0*10**-3\n", "vp=8.0\n", "\n", "#Calculations\n", "print(\"colpitts oscillator\")\n", "Ct=1/(4*3.14*3.14*(f**2)*L)\n", "C1=10*Ct\n", "C2=1/((1/Ct)-(1/C1))\n", "C2=180*10**-12#use standard value\n", "Xc2=1/(2*3.14*f*C2)\n", "Xc1=1/(2*3.14*f*C1)\n", "R1=10*Xc1\n", "R1=27*10**3#use standard value\n", "Acl=C1/C2\n", "R2=Acl*R1\n", "R2=270*10**3#use stabdard value\n", "R3=(R1*R2)/(R1+R2)\n", "f2=Acl*f\n", "SR=2*3.14*f*vp\n", "\n", "#Results\n", "print(\"The value of SR is %.2f \" %(SR/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "colpitts oscillator\n", "The value of SR is 2009.60 \n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.3 Page No 678" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "vo=8.0\n", "f=100.0*10**3\n", "print(\" hartley oscillator\")\n", "Vcc=vo+1\n", "Xl2=1.0*10**3\n", "\n", "#Calculations\n", "L2=Xl2/(2*3.14*f)\n", "L2=1.5*10**-3#use standard value\n", "L1=L2/10.0\n", "Lt=L1+L2#(assuming M=0)\n", "C1=1/(4*(3.14**2)*(f**2)*Lt)\n", "C1=1500*10**-12#use 1500pF with aadditional parallel capacitance if necessary\n", "#C1>>stray capacitance\n", "Xl1=2*3.14*f*L1#R1>>Xl1\n", "R1=1*10**3\n", "Acl=L2/L1\n", "R2=Acl*R1\n", "R3=(R1*R2)/(R1+R2)\n", "print(\"full power bandwidth \")\n", "f2=Acl*f\n", "SR=2*3.14*f*vo\n", "\n", "#Results\n", "print(\"The value of SR is %.2f \" %(SR/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " hartley oscillator\n", "full power bandwidth \n", "The value of SR is 5024.00 \n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.4, Page No 680" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "f=100.0*10**3\n", "Vo=9.0\n", "Acl=3.0\n", "\n", "#Calculations\n", "print(\" design of wein bridge oscillator\")\n", "Vcc=Vo+1\n", "C1=1000.0*10**-12#standard value\n", "C2=C1\n", "R1=1.0/(2*3.14*f*C1)\n", "R2=R1\n", "R4=R2\n", "R3=2*R4\n", "R3=3.3*10**3#use standard value\n", "print(\" minimum full power bandwidth\")\n", "f2=Acl*f\n", "SR=2*3.14*f*Vo\n", "\n", "#Results\n", "print(\"The value of SR is %.2f \" %(SR/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " design of wein bridge oscillator\n", " minimum full power bandwidth\n", "The value of SR is 5652.00 \n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.5 Page No 683" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "f=5.0*10**3\n", "vo=5.0\n", "I1=1.0*10**-3\n", "Vf=0.7\n", "\n", "#Calculations\n", "print(\"phase shift oscillator\")\n", "R1=(vo/29.0)/I1\n", "R1=150#use standard value\n", "R2=29*R1\n", "R4=(2*Vf)/I1\n", "R4=1.5*10**3#use 1.5kohm standard value\n", "R5=R2-R4\n", "R6=.4*R5\n", "R7=.8*R5\n", "R=R1\n", "C=1.0/(2*3.14*R*f*math.sqrt(6))\n", "\n", "#Results\n", "print(\"The value of C is %.2f mF\" %(C*10**9))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "phase shift oscillator\n", "The value of C is 86.68 mF\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.6 Page No 686" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "rds=600.0\n", "Vgs=1.0\n", "Vd1=0.7\n", "f=100.0*10**3\n", "\n", "#Calculations\n", "print(\"wien bridge ocillator\")\n", "R4=560.0\n", "R3=2*((R4*rds)/(R4+rds))\n", "I5=200.0*10**-6\n", "Vo=6\n", "R6=Vgs/I5\n", "R5=(Vo-(Vgs+Vd1))/I5\n", "print(\" C4 discharge voltage \")\n", "Vc=.1*Vgs\n", "print(\"C4 discharge time\")\n", "T=1/f\n", "Ic=I5\n", "C4=(Ic*T)/Vc\n", "Xc3=rds/10#at oscillating frequency\n", "C3=1/(2*3.14*f*Xc3)\n", "\n", "#Results\n", "print(\"The value of C3 is %.2f mF\" %(C3*10**9))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wien bridge ocillator\n", " C4 discharge voltage \n", "C4 discharge time\n", "The value of C3 is 26.54 mF\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.7, Page No 689" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Vo=14.0\n", "Vr3=.5\n", "Ib=500.0*10**-9\n", "f=1.0*10**3\n", "\n", "#Calculations\n", "print(\"square wave generator\")\n", "Vcc=Vo+1\n", "UTP=Vr3\n", "LTP=UTP\n", "I2=100*Ib\n", "R3=Vr3/I2\n", "R2=(Vo-Vr3)/I2\n", "t=1/(2*f)\n", "V=UTP-(-LTP)\n", "C1=.1*10**-6\n", "I1=(C1*V)/t\n", "R1=Vo/I1\n", "\n", "#Results\n", "print(\"The value of R1 is %.2f kohm\" %(R1/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "square wave generator\n", "The value of R1 is 70.00 kohm\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.8 Page No 694" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "\n", "R1=2.2*10**3\n", "R2=2.7*10**3\n", "C2=.5*10**-6\n", "Vcc=15.0\n", "\n", "#Calculations\n", "t1=.693*C2*(R1+R2)\n", "t2=.693*C2*R2\n", "T=t1+t2\n", "f=1/T\n", "Ic1=(Vcc/3)/(R1+R2)\n", "\n", "#Results\n", "print(\"The value of Ic1 is %.2f mA\" %(Ic1*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Ic1 is 1.02 mA\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.10 Page No 699" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Vcc=9.0\n", "Vo=3\n", "I1=1.0*10**-3\n", "f=500.0\n", "UTP=3.0\n", "\n", "#Calculations\n", "print(\"design the triangular wave\")\n", "Vi=Vcc-1\n", "V=Vo-(-Vo)\n", "print(\" I1>>Ibmax for op-amp\")\n", "R1=Vi/I1\n", "t=1.0/(2*f)\n", "C1=(I1*t)/V\n", "print(\"schmitt design\")\n", "I2=1.0*10**-3\n", "R2=UTP/I2\n", "R3=(Vcc-1)/I2\n", "\n", "#Results\n", "print(\"The value of R3 is %.2f kohm\" %(R3/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "design the triangular wave\n", " I1>>Ibmax for op-amp\n", "schmitt design\n", "The value of R3 is 8.00 kohm\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.11 Page No 705" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "f=100.0*10**3\n", "Rs=1.5*10**3\n", "R1=2.0*Rs\n", "\n", "\n", "#Calculations\n", "R1=2.7*10**3#use standard value\n", "R2=R1+Rs\n", "C1=1/(2*3.14*f*R2)\n", "R4=R2\n", "R3=2*R4\n", "\n", "#Results\n", "print(\"The value of R3 is %.2f kohm\" %(R3/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R3 is 8.40 kohm\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.12, Page No 705" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "fs=1.0*10**6\n", "Rs=700.0\n", "C1=1000.0*10**-12\n", "C2=100.0*10**-12\n", "R1=1.0*10**6\n", "R2=10.0*10**3\n", "Rs=700.0\n", "Vdd=5\n", "\n", "#Calculations\n", "Ct=(C1*C2)/(C1+C2)\n", "print(\" at resonance Xl=Xct 2*pi*f*L=1/2*pi*f*Ct\")\n", "L=1/(((2*3.14*f)**2)*Ct)\n", "ip=Vdd/(R1+R2+Rs)\n", "Pd=(((.707*ip)**2)*Rs)*10**9\n", "\n", "#Results\n", "print(\" peak power dissipated is %.3fnW \" %Pd)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " at resonance Xl=Xct 2*pi*f*L=1/2*pi*f*Ct\n", " peak power dissipated is 8.563nW \n" ] } ], "prompt_number": 38 } ], "metadata": {} } ] }