{ "metadata": { "name": "Chapter_17" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "

Chapter 17: Voltage Regulators

" ] }, { "cell_type": "markdown", "source": [ "

Example 17.1, Page Number:552

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", "For more information, type 'help(pylab)'." ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "'''Percentage line regulation'''", "", "#variable declaration", "Del_V_out=0.25;", "V_out=15;", "Del_V_in=5; #All voltages in Volts", "", "#Calculations", "line_regulation=((Del_V_out/V_out)/Del_V_in)*100;", "", "#Result", "print('line regulation in %%V is %f' %line_regulation)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "line regulation in %V is 0.333333" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "

Example 17.2, Page Number: 553

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "''' Load regulation percentage'''", "", "# Variable Declaration", "V_NL=12.0; #No load output voltage in Volts", "V_FL=11.9; #Full load output voltage in Volts", "I_F=10.0; #Full load current in milli-Amperes", "", "#Calculations", "load_regulation=((V_NL-V_FL)/V_FL)*100;", "load_reg=load_regulation/I_F;", "", "#Result", "print('load regulation as percentage change from no load to full load = %f'%load_regulation)", "print('\\nload regulation as percentage change per milliampere = %f' %load_reg)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "load regulation as percentage change from no load to full load = 0.840336", "", "load regulation as percentage change per milliampere = 0.084034" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "source": [ "

Example 17.3, Page Number: 556

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Series regulator'''", "", "", "V_REF=5.1 #Zener voltage in volts", "R2=10*10**3;", "R3=10*10**3; #resistances in ohm", "V_out=(1+(R2/R3))*V_REF;", "print('output voltage in volts = %.1f'%V_out)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "output voltage in volts = 10.2" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "source": [ "

Example 17.4, Page Number: 557

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Overload protection'''", "", "R4=1; #Resistance in Ohms", "I_L_max=0.7/R4;", "print('maximum current provided to load(in amperes) = %.1f'%I_L_max)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum current provided to load(in amperes) = 0.7" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "source": [ "

Example 17.5, Page Number: 560

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Shunt regulator'''", "", "V_IN=12.5; #maximum input voltage in volts", "R1=22; #In Ohms", "#Worst case of power dissipation is when V_OUT=0V", "V_OUT=0;", "V_R1=V_IN-V_OUT; #Voltage across R1", "P_R1=(V_R1*V_R1)/R1; #maximum power dissipated by R1", "print('maximum power dissipated by R1 in WATTS = %f'%P_R1)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum power dissipated by R1 in WATTS = 7.102273" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "source": [ "

Example 17.6, Page Number: 569

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Positive linear voltage regulator'''", "", "print('SAME AS EX-2.8 in CHAPTER-2')" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "SAME AS EX-2.8 in CHAPTER-2" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "source": [ "

Example 17.7, Page Number: 572

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''External pass Filter'''", "", "I_max=700*10**-3; #in Amperes", "R_ext=0.7/I_max;", "print('value of resistor in Ohms for which max current is 700mA = %f'%R_ext)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of resistor in Ohms for which max current is 700mA = 1.000000" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "source": [ "

Example 17.8, Page Number: 572

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Power rating 7824'''", "", "V_OUT=24.0; #Output voltage in Volts", "R_L=10.0; #Load resistance in Ohms", "V_IN=30.0; #Input voltage in Volts", "I_max=700.0*10**-3; #maximum interal current in Amperes", "I_L=V_OUT/R_L; #load current in amperes", "I_ext=I_L-I_max; #current through the external pass transistor in Amperes", "P_ext_Qext=I_ext*(V_IN-V_OUT); #power dissipated", "print('power dissiated(in WATTS) by the external pass transistor = %.1f'%P_ext_Qext)", "print('\\nFor safety purpose, we choose a power transistor with rating more than this, say 15W')" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "power dissiated(in WATTS) by the external pass transistor = 10.2", "", "For safety purpose, we choose a power transistor with rating more than this, say 15W" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "source": [ "

Example 17.9, Page Number: 574

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Current regulator'''", "", "V_out=5.0; #7805 gives output voltage of 5V", "I_L=1.0; #constant current of 1A", "R1=V_out/I_L;", "print('The value of current-setting resistor in ohms = %d'%R1)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of current-setting resistor in ohms = 5" ] } ], "prompt_number": 10 } ] } ] }