"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"",
"Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].",
"For more information, type 'help(pylab)'."
]
}
],
"prompt_number": 318
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"V_GS_off=-4; # voltage in volt",
"I_DSS=12*10**-3; # current in ampere",
"R_D=560; # resistance in ohm",
"",
"#calculation",
"V_P=-1*V_GS_off; # volt ",
"V_DS=V_P; # Vds in volt",
"I_D=I_DSS; # current accross resistor",
"V_R_D=I_D*R_D; #voltage across resistor",
"V_DD=V_DS+V_R_D; # Vdd in volt",
"",
"# result",
"print \"The value of V_DD required to put the device in the constant\"",
"print \" current area of operation of JFET = %.2f volt\" %V_DD"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of V_DD required to put the device in the constant",
" current area of operation of JFET = 10.72 volt"
]
}
],
"prompt_number": 319
},
{
"cell_type": "markdown",
"source": [
"
Example 7.2, Page Number: 218
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"print('The p-channel JFET requires a positive gate to source voltage.')",
"print('The more positive the voltage, the lesser the drain current.')",
"print('Any further increase in V_GS keeps the JFET cut off, so I_D remains 0')"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The p-channel JFET requires a positive gate to source voltage.",
"The more positive the voltage, the lesser the drain current.",
"Any further increase in V_GS keeps the JFET cut off, so I_D remains 0"
]
}
],
"prompt_number": 320
},
{
"cell_type": "markdown",
"source": [
"
Example 7.3, Page number: 219
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"I_DSS=9.0*10**-3;",
"V_GS_off=-8.0;",
"V_GS=0.0;",
"I_D=9.0*10**-3",
"I_D=I_DSS*(1-(V_GS/V_GS_off))**2;",
"print('Value of I_D for V_GS=0V is %f A '%I_D)",
"V_GS=-1.0",
"I_D=I_DSS*(1-(V_GS/V_GS_off))**2;",
"print('Value of I_D for V_GS=-1V is %f A'%I_D)",
"V_GS= -4.0",
"I_D=I_DSS*(1-(V_GS/V_GS_off))**2;",
"print('Value of I_D for V_GS=-4V is %f A'%I_D)"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Value of I_D for V_GS=0V is 0.009000 A ",
"Value of I_D for V_GS=-1V is 0.006891 A",
"Value of I_D for V_GS=-4V is 0.002250 A"
]
}
],
"prompt_number": 321
},
{
"cell_type": "markdown",
"source": [
"
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"V_DD=15; # voltage in volt",
"V_G=0; # voltage in volt",
"I_D=5*10**-3; # current in ampere",
"R_D=1*10**3; # resistance in ohm",
"R_G=10*10**6; # resistance in ohm",
"R_S=220; # resistance in ohm",
"",
"# calculation",
"V_S=I_D*R_S; # source voltage in volt",
"V_D=V_DD-I_D*R_D; # drain voltage in volt",
"V_DS=V_D-V_S; # drain to source voltage in volt",
"V_GS=V_G-V_S; # gate to source voltage in volt",
"",
"# result",
"print \"Drain to source voltage = %.2f volts\" %V_DS",
"print \"Gate to source voltage = %.2f volts\" %V_GS"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Drain to source voltage = 8.90 volts",
"Gate to source voltage = -1.10 volts"
]
}
],
"prompt_number": 324
},
{
"cell_type": "markdown",
"source": [
"
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"V_D=6; # drain voltage in volt",
"V_GS_off=-3; # off voltage in volt",
"V_DD=12; # voltage in volt",
"I_DSS=12*10**-3; # current in ampere",
"",
"#calculation",
"I_D=I_DSS/2; #MIDPOINT BIAS",
"V_GS=V_GS_off/3.4; #MIDPOINT BIAS",
"R_S=abs((V_GS/I_D)) #resistance i voltage",
"R_D=(V_DD-V_D)/I_D #resistance in voltage ",
"",
"# result",
"print \"Source resistance = %.2f ohm\" %R_S",
"print \"Drain resistance = %d ohm\" %R_D"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Source resistance = 147.06 ohm",
"Drain resistance = 1000 ohm"
]
}
],
"prompt_number": 327
},
{
"cell_type": "markdown",
"source": [
"
Example 7.10, Page Number: 227
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"import pylab",
"import numpy",
"",
"# variable declaration",
"R_S=680.0; # resistance in ohm",
"I_D=0; # current in ampere",
"",
"#calculation",
"V_GS=I_D*R_S; #FOR I_D=0A",
"",
"I_DSS=4*10**-3; # current in ampere",
"I_D=I_DSS; # currents are equal",
"V_GS1=-1*I_D*R_S; #FOR I_D=4mA",
"",
"# result",
"print \"V_GS at I_D=0amp is %d volt\" %V_GS",
"print \"V_GS at I_D=4mA is %.2f volt\" %V_GS1",
"print \"Plotting load line using the values of V_GS at I_D=0 and 4mA,\"",
"print \" we find the intersection of load line with transfer characteristic\"",
"print \" to get Q-point values of V_GS=-1.5V and I_D=2.25mA\"",
"",
"#########PLOT######################",
"idss=4",
"vgsoff=-6",
"vgs=arange(-6.0,0.0,0.0005)",
"idk=arange(0.0,4.0,0.0005)",
"ids=arange(0.0,2.25,0.0005)",
"vgsk=-idk*0.68",
"i_d=idss*(1-(vgs/vgsoff))**2",
"text(-3.00,2.25,'Q Point',size=13)",
"text(-3.25,2,'(-1.5V, 2.25mA)')",
"plot(vgs,i_d)",
"plot(vgsk,idk,'b')",
"plot(-1.5,2.25,'o')",
"ylim( (0,5) )",
"title('Transfer characteristic curve')",
"xlabel('Vgs')",
"ylabel('Idss')"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"V_GS at I_D=0amp is 0 volt",
"V_GS at I_D=4mA is -2.72 volt",
"Plotting load line using the values of V_GS at I_D=0 and 4mA,",
" we find the intersection of load line with transfer characteristic",
" to get Q-point values of V_GS=-1.5V and I_D=2.25mA"
]
},
{
"output_type": "pyout",
"prompt_number": 328,
"text": [
""
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEXCAYAAABSwdSZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8TNf7B/BPNqIVkVCxhSxoLGmEhqJqNPZ9J3ZCVVe6\nWaqkVW2/VBeKLr+gakmtRWypJagt9rWWZhNbkCCJJJLMnN8fp5kKWZmZO3Pn83695iVm7tz73Eue\nOXPuOeexEUIIEBGRKtgqHQARERkOkzoRkYowqRMRqQiTOhGRijCpExGpCJM6EZGKMKnTU0lMTMQr\nr7yCcuXK4cMPPzTqsTQaDUJDQ416DFP58ssvMXr06Cd6r5OTE+Li4gwbEKmGvdIB0JMrW7YsbGxs\nAAD379+Ho6Mj7OzsAAA///wzgoKCjB7Dzz//jEqVKiElJcXox7KxsdGfr5KGDx8Od3d3TJ8+/Yn3\nMWnSpGJtp9FoMGTIEAQHB+ufS01NfeLjkvoxqVuwtLQ0/c+enp4IDQ3Fq6+++th2OTk5sLc3zj91\nfHw86tat+0TvNWZcRdHpdLC1VeaLqlar1X/4FsUcPsQepuS/GRUPu19UKDIyEtWrV8fMmTNRpUoV\nBAcH4+7du+jSpQsqVaoEV1dXdO3aFVevXtW/R6PRYOrUqXj55ZdRrlw5tG/fHklJSQCAzMxMDB48\nGBUrVoSLiwuaNGmCmzdvYvjw4ViyZAlmzpwJJycn7Ny5E0IIfPXVV6hVqxYqVqyI/v37486dOwCA\nuLg42NraYuHChahZsybatGmTb/zr169Hw4YN4ezsjFq1aiEiIkL/WlxcXL4xAkDfvn1RpUoVlC9f\nHq1atcK5c+f0rw0fPhxjx45Fp06dULZsWURGRmLTpk3w9/eHs7MzatSogU8//TRPHH/99ReaN28O\nFxcX1KhRA7/++it++eUXLF++XH/O3bt3BwBcu3YNvXv3RqVKleDl5YW5c+fq9xMSEoI+ffpgyJAh\ncHZ2xuLFixESEoIhQ4YUen0//vhj7N27F2+99RacnJzwzjvvAABsbW0RExMDAMjIyMD7778PDw8P\nlC9fHi1btkRmZmaJrquHhwd27NiRJ97c2B79NwsMDESnTp0wb968PPv28/PDH3/8AQA4f/482rZt\niwoVKsDHxwerVq3KNx4yEkGq4OHhIXbs2CGEEGLXrl3C3t5eTJw4UWRlZYmMjAyRlJQk1q5dKzIy\nMkRqaqro27ev6NGjh/79rVq1ErVq1RKXLl0SGRkZQqPRiIkTJwohhPjxxx9F165dRUZGhtDpdOLY\nsWMiJSVFCCHE8OHDxSeffKLfz3fffSeaNWsmrl69KrKyssSYMWNEUFCQEEKI2NhYYWNjI4YNGybS\n09NFZmbmY+dx6NAh4ezsLLZv3y6EEOLq1avi/Pnz+hi9vb3zjVEIIRYtWiTS0tJEVlaWGDdunGjY\nsKH+tWHDhglnZ2exf/9+IYQQmZmZIjIyUpw5c0YIIcSpU6eEm5ub+OOPP4QQQsTFxQknJycRFhYm\ncnJyRFJSkjhx4kS+56zVakWjRo3E9OnTRXZ2toiJiRFeXl5i27ZtQgghpk2bJhwcHMT69euFEEJk\nZGSIkJAQMWTIkCKvr0ajEaGhoXmukY2NjYiOjhZCCPHGG2+I1q1bi2vXrgmtVisOHDggHjx4UKLr\n+vD/HSGECAkJEYMHD8733ywjI0MsWbJEtGjRQr/92bNnRfny5UVWVpZIS0sT1atXF4sXLxZarVYc\nP35cVKxYUZw7d+6xmMg42FJXKVtbW3z66adwcHCAo6MjXF1d0bNnTzg6OqJs2bKYPHkydu/erd/e\nxsYGI0aMQK1ateDo6Ih+/frhxIkTAIBSpUohKSkJly5dgo2NDfz9/eHk5KR/r3ho+aCffvoJn3/+\nOapWrQoHBwdMmzYNq1evhk6n028TEhKCMmXKoHTp0o/FHRoaiuDgYAQGBgIAqlatiueff14f48iR\nI/ONEZCt8WeffVZ/3JMnT+bpf+7RoweaNWsGAChdujRatWqF+vXrAwB8fX0xYMAA/TVZvnw52rZt\ni/79+8POzg6urq7w8/PL95wPHz6M27dvY8qUKbC3t4enpydGjRqFsLAw/TbNmzdHt27dAACOjo4Q\nQuj3UZLr+zCdTodFixbh+++/R5UqVWBra4uXXnoJpUqVKtF1fVR+x8v9N3N0dESPHj1w4sQJJCQk\nAACWLVuG3r17w8HBAeHh4fD09MSwYcNga2uLhg0bolevXmytmxCTuko999xzeX6509PTMWbMGHh4\neMDZ2RmtWrXCvXv38vwCV65cWf9zmTJl9H32Q4YMQfv27TFgwABUq1YNEyZMQE5OTr7HjYuLQ8+e\nPeHi4gIXFxfUq1cP9vb2SExM1G/j7u5eYNxXrlyBt7d3ga8XFKNWq8XEiRNRq1YtODs7w9PTEwBw\n+/ZtAPID4dHjHjp0CK1bt0alSpVQvnx5/PTTT/runISEBHh5eRUYx8Pi4+Nx7do1/Tm7uLjgyy+/\nxM2bN/XbVK9evcD3F3V9C+pXv337NjIzMwu9XrmKuq5FefjaOTk5oXPnzlixYgUAICwsDIMGDQIg\nr8WhQ4fyXIvly5fn+fcn42JSV6lHE8Hs2bNx8eJFREVF4d69e9i9e3ee1mJh7O3tMXXqVJw9exb7\n9+9HeHg4lixZku+2NWrUwNatW3Hnzh39Iz09HVWqVCkwtoe5u7vjn3/+KeZZ/mf58uXYsGEDduzY\ngXv37iE2NhZAwa1cABg4cCB69OiBK1eu4O7du3j99df129eoUQPR0dH5vu/R+GvUqAFPT88855yS\nkoLw8HD99o++5+G/F3Z9C7tWFStWhKOjY7GuV2HX9dlnn8X9+/f1f79x48Zj2zwaR1BQEFasWIED\nBw4gMzMTrVu3BiCvRatWrfJci9TU1Mf64Ml4mNStRFpaGsqUKQNnZ2ckJyc/dlMQKDgB7tq1C6dP\nn4ZWq4WTkxMcHBz0ozcefc/rr7+OyZMn4/LlywCAW7duYcOGDcWOMzg4GIsWLcLOnTuh0+lw9epV\nXLhwocgY09LSULp0abi6uuL+/fuYPHlykeeWlpYGFxcXlCpVClFRUVi+fLn+tYEDB2L79u1YtWoV\ncnJykJSUhJMnTwIA3Nzc9DcqAaBJkyZwcnLCzJkzkZGRAa1WizNnzuDIkSMFHvvh5yIjIwu8vm5u\nbgV+uNja2mLkyJF47733cP36dWi1Whw4cABZWVmPbVvYdW3YsCHCwsKQk5ODI0eOYM2aNUWOuunU\nqRPi4+Mxbdo0DBgwQP98ly5dcPHiRSxduhTZ2dnIzs7G4cOHcf78+UL3R4bDpK5Sj/5Sjhs3DhkZ\nGahYsSKaN2+Ojh07Ftp6fLh1mZiYiL59+8LZ2Rn16tXTj51+dDsAePfdd9GtWze0a9cO5cqVQ7Nm\nzRAVFVVgXI8KCAjAokWLMH78eJQvXx4ajUb/AVFYjEOHDkXNmjVRrVo1NGjQAM2aNStw21zz58/H\n1KlTUa5cOUyfPh39+/fXv1ajRg1s3rwZs2fPRoUKFeDv749Tp04BkAny3LlzcHFxQa9evWBra4vw\n8HCcOHECXl5eeO655/Daa6/px+4X1FLPfe7GjRsFXt93330Xq1evhqurK8aNG/fY9fr666/h6+uL\ngIAAVKhQAZMmTcpz/6I413X69OmIjo6Gi4sLQkJC9F0p+V3zXKVKlUKvXr2wY8cODBw4UP982bJl\nERERgbCwMFSrVg1VqlTBpEmT8v2gIeOwEcX5/k1ERBbBKLMIPDw8UK5cOdjZ2cHBwSFPS42IiIzH\nKEndxsYGkZGRcHV1NcbuiYioAEbrU2evDhGR6RmlT93LywvOzs6ws7PDmDFj8qxGZ25rWRARWYpi\npWtjTFO9du2aEEKImzdvCj8/P7Fnzx79a0Y6pNmYNm2a0iEYFc/Psqn5/NR8bkIUP3capfsld6LJ\nc889h549e/JGKRGRiRg8qaenp+vX27h//z4iIiLg6+tr6MMQEVE+DD76JTExET179gQg114eNGgQ\n2rVrZ+jDmC2NRqN0CEbF87Nsaj4/NZ9bSZh88pGNjQ1HxhARlVBxcyeXCSAiUhEmdSIiFWFSJyJS\nESZ1IiIVYVInIlIRJnUiIhVhUiciUhEmdSIiFWFSJyJSESZ1IiIVYVInIlIRJnUiIhVhUiciUhEm\ndSIiFWFSJyJSESZ1IiIVYVInIlIRJnUiIhVhUiciUhEmdSIiFWFSJyJSESZ1IiIVYVInIlIRJnUi\nIhVhUiciUhEmdSIiFWFSJyJSESZ1IiIVYVInIlIRJnUiIhVhUiciUhEmdSIiFWFSJyJSESZ1IiIV\nYVInIlIRoyV1rVYLf39/dO3a1ViHICKiRxgtqX///feoV68ebGxsjHUIIiJ6hFGS+pUrV7B582aM\nGjUKQghjHIKIiPJhb4ydjh8/HrNmzUJKSkq+r4eEhOh/1mg00Gg0xgiDyOSOHgUaN1Y6ClKDyMhI\nREZGlvh9NsLATenw8HBs2bIF8+bNQ2RkJGbPno2NGzf+d0AbG7beSZUePABeeAF4/33gtdeUjobU\nRKcD7OyKlzsN3lLfv38/NmzYgM2bNyMzMxMpKSkYOnQolixZYuhDEZmV0qWB8HCgZUvAywto00bp\niEgNhADefrv42xu8pf6w3bt34+uvv2ZLnazKnj1Anz7A7t1A3bpKR0OWbvJkICICOHq0eLnT6OPU\nOfqFrM0rrwCzZgFdugC3bikdDVmyr74C1q8Htm4t/nuM2lLP94BsqZOV+PhjIDIS2LEDcHRUOhqy\nNPPmAd9+K7/5Va1a/NzJpE5kJDodMGAAYG8PLFsG8EsrFVdoKPDZZ7ILz8NDPlfc3MllAoiMxNYW\n+PVXICZG/oISFceyZcC0acD27f8l9JIwyjh1IpLKlJF9ok2bArVrAwMHKh0RmbM1a4APPpBddrVr\nP9k+mNSJjMzNDdi4EQgMBGrWBFq0UDoiMkfh4cAbbwDbtgH16j35ftj9QmQCvr7AkiVyqGNMjNLR\nkLn5809g5Ej54d+w4dPti0mdyEQ6dACmTAE6dwbu3lU6GjIXe/bIbrm1a4EmTZ5+fxz9QmRi774L\nnDsHbN4MODgoHQ0p6eBBoFs3YMUK2T1XGA5pJDJTWq38Ra5eHfjxRw51tFbHjgEdOwKLF8s/i8Ih\njURmys4OCAsDDhyQk0vI+pw5A3TqJD/Ui5PQS4KjX4gU4OQkRzs0awZ4ewPduysdEZnKhQtA+/by\nA71nT8Pvny11IoXUqAH88QcwapT8Kk7qd+GC7DufMQMICjLOMZjUiRQUECC/gnfvDly9qnQ0ZEwX\nL8qEPn06MHy48Y7D7hcihfXuDVy6BHTtKoe3lS2rdERkaJcuyYT+2WfAiBHGPRZHvxCZASGA4GAg\nKUmOV7azUzoiMpR//gFat5bruYwa9eT74egXIgtiYyO7YVJSgAkTlI6GDCU6Gnj1VWDq1KdL6CXB\npE5kJkqVkgs6bdgA/Pyz0tHQ04qJkQl9yhRg9GjTHZd96kRmxNUV2LSJdU4tXUyM7HKZNMn0RcjZ\nUicyM7VrAytXyvVA/v5b6WiopGJjZQt94kTg9ddNf3wmdSIzxDqnlikuTib0Dz8Exo5VJgaOfiEy\nY6xzajni4mSXy/vvA2+9Zfj9c0EvIhVgnVPLEB0tx6G//z7w9tvGOQaHNBKpAOucmr8LFwCNRt4U\nNVZCLwmOfiEyc6xzar7OnQPatgU+/9z4M0WLi0mdyAKwzqn5OXVKrrY4axYweLDS0fyH3S9EFoJ1\nTs3HsWNAu3bA99+bV0IHmNSJLEpundMuXVjnVCmHDsl/hwULgH79lI7mcRz9QmSBWOdUGfv2ycIW\nCxfKD1ZT4pBGIhVjnVPTi4yULfOlS2XXi6lxSCORirHOqWlt3w707SuvuRIJvSQ4+oXIQrHOqWmE\nh8vhimvXyoXWzB1b6kQWjHVOjSssTBYvyV050xIwqRNZONY5NY6ff5bT/rdvB5o0UTqa4mP3C5EK\nsM6pYc2eDcydK2+O1q6tdDQlw9EvRCrBOqdPTwggJER2u2zfDri7Kx3Rfzj6hcjKsM7p09HpgPHj\n5To7e/eaV0IvCSZ1IhXJrXO6cSPrnJaEVivriEZFAbt2AZUqKR3RkzN4n3pmZiZatWqFBw8eICsr\nC927d8eXX35p6MMQUQFcXeUwPNY5LZ6sLLl+S3IyEBFh+fcjjNKnnp6ejmeeeQY5OTl4+eWX8fXX\nX+Pll1+WB2SfOpFJ7NkjF//avRuoW1fpaMxTerq8RqVKyX50c64upWif+jPPPAMAyMrKglarhaur\nqzEOQ0SFYJ3Twt27B3TsKL/ZrFpl3gm9JIwypFGn06FRo0aIjo7G2LFjUa9evTyvh4SE6H/WaDTQ\naDTGCIPI6g0bJoc69ujBOqcPu35dJvSWLeXyubZmeHcxMjISkZGRJX6fUYc03rt3D+3bt8dXX32l\nT9zsfiEyrdw6pw4OcjEqa1/8Kzpart8yYoQs7G0p18MshjQ6Ozujc+fOOHLkiDEPQ0SFyK1zGh3N\nOqfHj8vW+UcfyXXpLSWhl4TBk/rt27dx99/V+zMyMvDnn3/C39/f0IchohLIrXO6aBGwfLnS0Shj\n1y5Zfu6HH4AxY5SOxngM3qd+/fp1DBs2DDqdDjqdDkOGDEFgYKChD0NEJWTNdU7XrAHGjgV+/x1o\n3VrpaIyLywQQWZmtW2V/8r59chy72v30E/Dpp3KlRUvuNGDlIyIq0Lx58rF/P1C+vNLRGIcQwOef\nA4sXA9u2AbVqKR3R02FSJ6JCqbnOqU4HvPMO8NdfwJYtQJUqSkf09JjUiahQaq1zmpkpx+ffuAFs\n2AA4OysdkWGYxZBGIjJfaqxzmpwsx6ALIbtc1JLQS4JJnciK5dY5nT1bDnm0ZPHxwMsvy0pQ5r6O\nizExqRNZOTXUOT1+XA7RfO01+QFljtP+TcWKT52IcllyndNt22SXy/ffA+PGKR2N8lijlIgAWGad\n00WLgEmT5DcNa5pMVZgSjX5JTk7GlStX8MILLzz5ATn6hchsWUqdUyGA6dPlGPTNmwEfH6UjMj6D\njX5p1aoVUlJSkJycjMaNG2PUqFEYP368QYIkIvNiCXVOs7Nl6bkNG+TkKWtI6CVRZFK/d+8eypUr\nh7Vr12Lo0KGIiorC9u3bTREbESnAnOucpqbKfv9r14DISKByZaUjMj9FJnWtVovr169j5cqV6Ny5\nMwD5NYCI1Cu3zunUqYC5tOESEuSQxerVZSvdEvr8lVBkUp86dSrat28Pb29vNGnSBNHR0ahdu7Yp\nYiMiBdWuDaxcCQwcCPz9t7KxHDkCNGsGDB0qF+iy5xCPAnGZACIq1K+/yuIaBw8Czz1n+uOvXSvX\nP//lF1mWz1oZ7EbpRx99hJSUFGRnZyMwMBAVK1bEb7/9ZpAgicj8DRsGBAXJhJqZabrjCgHMnCkX\nHtu2zboTekkUmdS3bduGcuXKITw8HB4eHoiOjsasWbNMERsRmYnPPgOqVZPDHU3xRTsrS45wWbFC\nrk3TqJHxj6kWRSb1nJwcAEB4eDj69OkDZ2dn3iglsjKmrHN65w7QoQNw8yawd6+8MUrFV2RS79q1\nK3x8fHD06FEEBgbi5s2bcLTWlXKIrJgp6pxGR8sbog0bAuvWcYTLkyjWjdKkpCSUL18ednZ2uH//\nPlJTU1H5CQeI8kYpkWU7fVrWOV23zrBT8//6C+jbF5g2DXj9dcPtVy2eukjGmjVrCu1m6dWrl1ED\nI7I2Tk5O2L59O5o2bap0KEUydJ3T0FBg8mTgt9/k4lz0uKce/bJx40Zs3LgRoaGhCA4OxrJly7Bs\n2TKMGjUKCxcuNGiwRObmwIED6NChA8qXL4+yZcvixRdfxJIlSwp9z+LFi2FrawsnJyc4OTmhZs2a\nGD9+PLKysop1zNTU1BIldFtbW+zfv7/Y2xtShw7AlClAly7A3btPvp+cHDm6ZeZMuYgYE/rTK3AI\n/+LFiwEAbdu2xblz51Dl3yJ/169fx7Bhw0wSHJESIiIi0L17d0yePBkrVqxAmTJlsHHjRowZMwYx\nMTEICQkp8L3e3t64dOkSAODkyZNo164dypUrh08//dQosSr5rffNN4GLF2WXyZPUOU1OBvr3l4uG\nHTwIuLgYJ05rU+SN0oSEhDz9525ubrh8+bJRgyJS0ptvvomBAwfik08+gYuLCxwdHdG3b198++23\nmDFjRrH///v5+aFly5Y4ceIEAODUqVN49dVX4erqCm9vb8yYMQM6nU6//cMt78WLF6N27dqYO3cu\n3N3d4erqitdff12/vZ+fHwCgXbt2cHJywmuvvWbIS1Bs33wj14p5662SDXU8dw5o2hR44QW5HAET\nuuEUmdTbtGmD9u3bY/HixVi0aBE6deqEtm3bmiI2IpO7ePEioqOjMXjw4MdeCwoKghACf/75Z5H7\nEULg+PHj2LNnDwICAnDv3j20bdsWgYGBSExMxKZNm7Bw4UJ88803Be4jPj4eN2/eRExMDA4fPoxV\nq1YhLCwMgPwWAAB//vknUlNT8bNCK289SZ3T8HBAowE+/lhWKeKUf8Mq8nLOnTsX69atw549e2Bj\nY4MxY8agZ8+epoiNyORu3boFAKhWrdpjr5UqVQoVK1bE7du3C3x/bGwsXFxcYGNjg4oVKyI4OBgT\nJkzAqlWrULp0aXz88ccAAB8fH0yYMAHffPMNPvjgg3z3VaZMGXz22WewsbGBt7c3AgMDceTIEQwc\nONAAZ2o4uXVOmzUDvL3lKoqb/tyEOcvn4IF4gNI2pfHOwHfQqU1nzJwJzJkjh0Y2a6Z05OpUZFK3\nsbFBr169nni0C5Elee7fxU2uXr2KOnXq5HktKysLt2/fLnQ4r6enp75P/WEJCQmoWbNmnue8vLyQ\nkJBQ4L4qVaqUZwTas88+i9TU1GKdh6nl1jnt1AmIu7YJc7e9i2j/aP3r/8yNxqxZQFpyZxw6xAlF\nxlRgUi9btmyBQxptbGyQkpJitKCIlFKnTh14eXlh2bJlaN26dZ7XwsLCYGtri/bt25d4vzVq1EB8\nfHye52JiYlCjRo0njtXcZnbn1jkd9OEcPBgWnee1mMbRSN8wF9F7O+OZZxQK0EoU2KeelpaG1NTU\nfB9M6KRmP/zwA5YuXYoZM2YgOTkZGRkZWL16NcaPH4+QkJAnmnjXuXNnPHjwAF988QWys7Nx4cIF\nzJw5E8HBwcXex6MjXSpXroyLFy+WOBZj6t0bqOrxIN/XnvfNZEI3gSJvlBJZmw4dOmDHjh3Ys2cP\nPD094eTkhP79+2POnDmYPHlyge+zsbEpsPVcrlw5REREYPv27XBzc0OHDh0wbNiwAktD5revR5+b\nMWMGpk6dCldXV4wdO/YJztQ4atcsne/zjnZcXsQUuJ46URHu3buHVq1aoX79+li6dKnZdXuYmzXh\nmzD883eR1vG/LhjvY974/q3v0bltZwUjs2xPvUyAsTCpkyVKTEzETz/9hJ49e8LX11fpcMxWTAzQ\nsydQocom6CrMRdTxTHhWd8TMD99mQn9KTOpEZFJbtgDDhwOffCJnm9rYAJcuAS1bAkuXAm3aKB2h\nZTNY5SMiS/XgwQO0atUq31+EPXv2oFGjRnBwcMCaNWsK3IdGo4GPjw/8/f3h7++PW7duYffu3Wje\nvHme7XJycuDm5oYbN24UuK9ly5bBz88PL7zwAlq0aIFTp07lu92gQYPg4+MDX19fBAcH62saREZG\nwtnZWR/L559/XpzL8JgePXqg2SODxOfMmfPEFc10OuDzz4FRo4A1a+Ts0tweKnOqc2o1hIkpcEiy\nUqGhoWLmzJn5vhYXFydOnTolhg4dKlavXl3gPjQajTh69Gie57RarXB3dxfx8fH657Zs2SICAwML\njWf//v3i7t27+u2bNm2a73abN2/W/xwUFCQWLFgghBBi165domvXroUeoyh37twR3t7eolGjRiIm\nJkb/fEpKiggICCjx/u7eFaJ7dyGaNxfi6tWCt1u8WAgvLyFu3nySqEmI4udOttRJtVasWIHu3bvn\n+1rNmjXh6+sLW9uifwXEIy19W1tb9OvXTz9lH5Bj2IOCggrdT7NmzeDs7AwAaNq0Ka5cuZLvdh07\ndtT/HBAQkGe7R2MBgLi4OPj4+GDEiBF4/vnnMWjQIERERKBFixaoU6cODh8+rN927dq16Nq1K/r2\n7ZsnficnJ1SoUAFnz54t9BwedvKkHJtetSqwa5f8syBK1Tm1Skb9aMmHAockK5STkyMqV65c5HbD\nhw8vsqVev3590bBhQzF9+nT980eOHBH+/v5CCCEyMzNFpUqVxJ07d4od36xZs8To0aML3SYrK0s0\natRI/PXXX0II2VJ3dXUVL7zwgujYsaM4e/asEEKI2NhYYW9vL86cOSN0Op1o3LixGDlypBBCiPXr\n14sePXro99m2bVtx4MABER0dLXx9ffMcb+rUqWL+/PnFij80VIiKFYVYurTYpyy0WiH69hVi4EAh\ndLriv4+k4uZOg7fUExIS0Lp1a9SvXx8NGjTAnDlzDH0IoiLdvn0bTk5OT72fZcuW4cyZM9i7dy/2\n7t2r73du3Lgx0tLScPHiRWzZsgUvvfQSypcvX6x97tq1CwsXLsT//ve/Qrd744030KpVK7T4t7xQ\n48aNkZCQgJMnT+Ltt99Gjx499Nt6enqifv36sLGxQf369dHm37uSDRo0QFxcHAA5gueff/7BSy+9\nBC8vL5QqVSpPy7xq1ar6bQuSni6LY8yeLdc/HzSoWKcMwLR1Tq2ZwZO6g4MDvv32W5w9exYHDx7E\nvHnz8DfvkJACxENdFVOmTIG/vz8a5VOWvrBx51X/7VMoW7YsBg4ciKioKP1rQUFBCAsLw++//15k\n10uuU6dOYfTo0diwYQNcCllv9tNPP0VSUlKeVRydnJzwzL9TMjt27Ijs7GwkJycDAEqX/m/Cj62t\nLUqVKqX/OfdG68qVK5GcnAxPT094enoiLi4OK1as0L9PCFHotbhwQS6Xm5MDREUBdesW65TzMEWd\nU2tn8KSfdneyAAAVo0lEQVReuXJlNGzYEID8Rahbty6uXbtm6MMQFapixYpIS0vT//3zzz/H8ePH\ncezYsTzbCSEKHCam1Wr1KzJmZ2dj48aNecaoBwUF4bfffsOuXbvy9N3/8MMPmDdv3mP7u3z5Mnr1\n6oWlS5eiVq1aBcb+f//3f4iIiMDyR7JeYmKiPtaoqCgIIeDq6lrgfh61YsUKbNu2DbGxsYiNjcWR\nI0fy9Ktfv34dHh4e+b7399+Bl18G3nkHWLIEePbZYh/2MW5uwMaNwLhxshweGZZRVzKOi4vD8ePH\nHyvR9XDlGI1GA41GY8wwyArZ2dmhQYMGuHDhAp5//vnHXj98+DB69eqFO3fuIDw8HCEhITh9+jQA\nwN/fH8ePH0dmZiY6dOiA7OxsaLVatG3bFqNHj9bvw8fHB2XLlkVAQADKlCmjf/78+fNo2bLlY8ec\nPn067ty5o5/S7+DgoG/5d+7cGaGhoahcuTLGjh0LDw8P/bDD3r17Y8qUKVi1ahV+/PFH2Nvb45ln\nnsmTkPNbUuDhn+Pj45GQkJDnd9HDwwPOzs44fPgwAgICEBUVha+//jrPfh48AN57D9i2DYiIAPz9\ni7jwxeTrKz8c+vQxXJ1TtYmMjERkZGSJ32e0yUdpaWnQaDSYMmVKnr4/Tj4iU1m8eDESExMxYcIE\nkx63a9euWLduHewtqPpDSkoKAgMD84yUiY0F+vUD3N1ld8m/A3cMat48+di/HyjmLQmrpeiM0uzs\nbHTp0gUdO3bEuHHjnigwoqeVlZWFNm3aYPfu3VyvpQhz5syBq6urvuLTmjXA2LHApEmym8SYl+/d\nd2V5uyepc2pNFEvqQggMGzYMFSpUwLf51LdiUicyXxkZwPjxwJ9/AitWAE2aGP+YWi3QrZssnPHj\nj8b9ALFkii0TsG/fPixduhS7du3ST2feunWroQ9DRAZ29qxM4ikpwPHjpknowJPVOaWCcUEvIisn\nBPDLL7IQ9MyZclEuJVrLly/LuqXz58s6p5RXcXOn5dzJISKDu3sXeO01OQZ9717Ax0e5WB6uc+ru\nDuQzpYCKgWu/EFmpAwfkEEU3N+DQIWUTeq7cOqfduwNXryodjWViS53Iymi1spvlu++An382v66O\n3r3lOuxdu8qlCMqWVToiy8I+dSIrEh8vV0wUQhaucHdXOqL8CQEEBwNJScDatfJmqrVjkQwi0hMC\nWLYMePFFoGNHYOdO803ogLxR++OPciSOieeOWTx2vxCp3J07ciLRqVOGnepvbKVKyUlQzZoBderI\nG7pUNLbUiVRs507Azw+oVAk4etRyEnouV1cgPByYOhXYvl3paCwD+9SJVCgzU447DwsDFi4E2rdX\nOqKns2ePXPxr9+4nW/JXDdinTmSlTp+Ws0Hj4mSXi6UndAB45RVg1iygSxfg1i2lozFvTOpEKqHV\nysT36qtyudzVq4EKFZSOynBY57R42P1CpAIXL8rp/aVLy+4WT0+lIzIOnQ4YMECu5rh0qXUt/sXu\nFyIroNPJSUTNmwMDBwI7dqg3oQOsc1ocHNJIZKGio2URaJ0OOHgQKKRCnqrk1jlt2hSoXVt+mNF/\n2FInsjA6nawW1LQp0LOnHBFiLQk9F+ucFox96kQWJC4OGDlSFrNYvBjIp/yqVdm6VX5bsYY6p+xT\nJ1IRnQ5YsEBO8+/QAfjrLyZ0QF6LKVPkUMe7d5WOxjywpU5k5i5cAEaPBrKzgdBQoF49pSMyP9ZQ\n55QtdSILl50NfPEF0KIF0LevbJ0zoefvm2/kWjFvvSUXL7NmTOpEZujIEdnVsnevXLPl7be5/Gxh\nWOf0PxzSSGRG0tPl4lW//QbMng0MGmRdE2yehpOTXPyrWTPA29v8in+YClvqRGZixw7A1xe4fh04\ncwYYPJgJvaRy65yOGgUcO6Z0NMrgjVIihd26BXz0kUzqCxYAnTsrHZHlW7NGjmE/eBCoVk3paAyD\nN0qJzJxOB/zf/wENGgDlywNnzzKhG0rv3sCbb8o6p2lpSkdjWmypEyng1ClZjUirlWXbGjZUOiL1\nUVudU7bUicxQWhrwwQdAmzZyKdn9+5nQjcVa65wyqROZgBDAunVynPmtW/JG6GuvyVUHyXhy65xu\n3Aj8/LPS0ZgGhzQSGVlsrBxnHhMDLFkCaDRKR2Rdcuuctmwp14dp00bpiIyL7QQiI0lPB6ZNAwIC\n5KzQEyeY0JVSuzawcqVcpvfvv5WOxriY1IkMTAhg1SpZIPniReD4cWDSJNkVQMqxljqn7H4hMqDT\np4F33gGSk+Ws0FdeUToietiwYcClS7LO6Y4dgKOj0hEZHlvqRAaQnCz7zdu0Afr1k+u1MKGbp88+\nkxOSgoPVufgXkzrRU9BqgZ9+kl0tOp1c/nXsWMCe34HNltrrnPK/HtET2r5djjl3dgYiIgA/P6Uj\nouJSc51TJnWiEjp7FvjwQ3kTdOZMWSeUC29Zntw6p4GBQM2acoSSGrD7haiYEhOB118HWrcG2rWT\nXS29ejGhWzJfXzl3oE8fOY9ADYyS1EeOHAk3Nzf4+voaY/dEJpWeDsyYAdSvDzzzDHD+vFwBkEMU\n1UFtdU6NktRHjBiBrVu3GmPXRCaj08lhiT4+cuLQoUOybJqrq9KRkaG9+SbQtq0sG5idrXQ0T8co\nSb1ly5ZwcXExxq6JjE4IYMsWoHFjYN48YMUKOZnI21vpyMiY1FLnVJEbpSEhIfqfNRoNNJw7TWZi\n3z45+/P2bdnl0qMH+8ytRW6d0xYtZJ3T995TNp7IyEhERkaW+H1GW089Li4OXbt2xenTp/MekOup\nkxk6dQr4+GP556efAkOGWP762/RkLl+WdU7nzzevOqdcT52oGGJiZC3Qdu3kbNCLF4Hhw5nQrZml\n1zllUierdO2avDkWEADUqSPXA3n3XaB0aaUjI3MQECALbHTvDly9qnQ0JWOUpB4UFITmzZvj4sWL\ncHd3x6JFi4xxGKISu3ZNJu8GDeRiThcuAFOnAk5OSkdG5sZS65yyRilZhevXgf/9T040GT4c+Ogj\noHJlpaMic2dOdU7Zp04EmczHj5cTh2xs5BT/b75hQqfiscQ6p0zqpEoPJ3MhZDL/9lugShWlIyNL\nY2l1TpnUSVXi4+W65vXryxmhZ84A333HZE5PJ7fO6dSpcnVOc8akTqpw7pysatOokVyf5exZ4Pvv\ngapVlY6M1MJS6pwyqZNFi4qSS9+2bi2HJv7zj7whypY5GYMl1Dnl6BeyOELI+pJffinHl3/wgZwo\n8swzSkdG1mLKFGDXLtPWOS1u7mRSJ4uRkyNvWM2eDaSmytEIAwdyCVwyPZ0OGDAAcHAAli41zfpA\nTOqkGvfuAf/3f8CcOYCHhxzV0q2brDVJpJSMDNnt17EjMG2a8Y9X3NzJcnZktmJjZSL/9Vf5i7Nm\nDfDii0pHRSSZa51TtnXI7Bw4IIsVBATIrpWTJ4Fly5jQyfzk1jkdN04u22wO2P1CZiEzUw4XmzdP\nrmU+bhwwYgRQtqzSkREVbetW+f913z7Ay8s4x2CfOlmEuDg5DXvhQjnG/M03gU6duPQtWZ558+Rj\n/36gfHnD759rv5DZ0umAbdvkzc4XXwSysmQLZ+tWuSIeEzpZInOpc8qWOplMcrK86Tl/vuxWefNN\neXOJ48tJLbRa2VhxdwcWLDDsUEe21Mks6HTAzp0yeXt5AUePysR+7BgnDJH65NY53b9fLiCnBA5p\nJKO4ehVYvBgIDZUFKEaPlv2NLi5KR0ZkXE5OcvGvZs0Ab2/T1zllUieDyc4GNm+WE4X27QP69ZMj\nWho3Ns2MOyJzkVvntFMn2RXTqJHpjs0+dXoqQgAnTgC//QasWAHUqiW7Vfr0AZ59VunoiJS1Zo0c\nnnvwIFCt2tPtizNKyagSEuSEoN9+k9OlBw8Gdu+WKyUSkdS7t1x0rmtXYM8e08y7YEudii0lRbY8\nfvtNzvLs0wcYMgRo0YLdK0QFMVSdU04+IoNIT5f95CtXAhERcgGjwYOBzp1Nt+QokaXLygLat5f3\nl77++sn2waROTyw9HdiyBVi1Sk4IatJE3vTs2ROoUEHp6IgsU3KyHBHz/vvAa6+V/P1M6lQiGRky\nga9cKRN6QICcGdezJ/Dcc0pHR6QOly4BLVvKNdjbtCnZe5nUqUjJycCmTXL50O3b5VfD3BZ5pUpK\nR0ekTnv2yPtRu3cDdesW/31M6pSv2FiZxNevl7M7X31VTo7o3JmJnMhUfv0V+OwzOdSxuN+EmdQJ\ngFyL4uhRuebz+vVAYqIsmtu9u/z6x2n6RMooaZ1TJnUrduOGHKmydav8s3Jl2RLv3l1WaeEqiETK\nK2mdUyZ1K5KdLRcQ2rZNJvLYWNkK79BBDqOqXl3pCIkoPyWpc8qkrmJarZyav2uXfOzbJ2skdugg\nH02bAvacK0xkERIT5e/sF18UXueUSV1FdDrgzBm5hO2uXfLueZUq8hO+dWugVSsOOySyZKdPA4GB\nwLp1coZ2fpjULVhmplxvfP9++di7V5bHat1ajlbRaGQ/ORGpR1F1TpnULciNG/8l8P375boqdesC\nzZvLx8svs1+cyBoUVueUSd1M3bkjhxjmPg4fBu7d+y+BN28uZ3Ny2Voi6/Tuu8C5c3LNJQeH/55n\nUjcDt2/LG5oPJ/Fbt4CGDWXB5caN5aNOHcCWhQWJCAXXOWVSN6G0NPnJeuaMvOFx5ox8pKcDfn7/\nJe8XX5SjVDhOnIgKk5oqb5gOHw689558jkndwIQArl0DLl6Uj0uX5J9nzwLXrwM+PkCDBkCZMpHo\n0UODBg1kP7ja1hmPjIyERqNROgyj4flZLrWd2+XLclXH+fPlxMHi5k6jfOnfunUrfHx8ULt2bfzv\nf/8zxiGMIj0duHBBzsL85Rfg44/lSoUNG8qKJY0bywkCUVFyCOHw4bLfKyVFjlZZsgSoUiUSHTvK\nr05qS+iA/MVRM56f5VLbueXWOR01SuaX4jL4FBWtVou33noL27dvR7Vq1RAQEIBu3bqhbkmWIzMw\nIeSKhImJcqRJ7uPKFSA+Xn4ixsfL5OzuDtSsKR8eHrIcVZ06svZmuXKKnQIRWaGAAODHH2VLvbgM\nntSjoqJQq1YteHh4AAAGDBiA9evXP3VS1+nk+O3792WLOjVVjiQp7JGbxBMT5WiSypXlw81NPqpX\nB1566b8kXqkSb1gSkXnp3Rv45x9g4sTibW/wPvXVq1dj27Zt+OWXXwAAS5cuxaFDhzB37lx5QDX2\nSRARmUBx0rXBW+pFJW1LvElKRGQpDN7ZUK1aNSQkJOj/npCQgOqcDklEZBIGT+ovvvgiLl26hLi4\nOGRlZeH3339Ht27dDH0YIiLKh8G7X+zt7fHDDz+gffv20Gq1CA4OVnTkCxGRNTHKWI+OHTviwoUL\n+OeffzBp0qR8t5k7dy7q1q2LBg0aYMKECcYIQzEhISGoXr06/P394e/vj61btyodklHMnj0btra2\nSE5OVjoUg/rkk0/g5+eHhg0bIjAwME93ohp8+OGHqFu3Lvz8/NCrVy/cu3dP6ZAMatWqVahfvz7s\n7OxwrCQDvM1Yieb+CAXs3LlTtGnTRmRlZQkhhLh586YSYRhNSEiImD17ttJhGNXly5dF+/bthYeH\nh0hKSlI6HINKSUnR/zxnzhwRHBysYDSGFxERIbRarRBCiAkTJogJEyYoHJFh/f333+LChQtCo9GI\no0ePKh3OU8vJyRHe3t4iNjZWZGVlCT8/P3Hu3LkCt1dkVPaCBQswadIkOPy7BNlzKqzwIFQ+yue9\n997DzJkzlQ7DKJycnPQ/p6WloWLFigpGY3ht27aF7b8TMpo2bYorV64oHJFh+fj4oE6dOkqHYTAP\nz/1xcHDQz/0piCJJ/dKlS9izZw9eeuklaDQaHDlyRIkwjGru3Lnw8/NDcHAw7t69q3Q4BrV+/XpU\nr14dL7zwgtKhGM3HH3+MGjVq4Ndff8XE4s76sEALFy5Ep06dlA6DCnH16lW4u7vr/169enVcvXq1\nwO2NVsmybdu2uHHjxmPPz5gxAzk5Obhz5w4OHjyIw4cPo1+/foiJiTFWKEZR2PmNHTsWU6dOBSD7\nZ99//32EhoaaOsSnUtj5ffnll4iIiNA/Z4nfSgo6vy+++AJdu3bFjBkzMGPGDHz11VcYP348Fi1a\npECUT66o8wPkv2WpUqUwsLDCmGaqOOenFiWesGmyjqGHdOjQQURGRur/7u3tLW7fvq1EKEYXGxsr\nGjRooHQYBnP69GlRqVIl4eHhITw8PIS9vb2oWbOmSExMVDo0o4iPjxf169dXOgyDW7RokWjevLnI\nyMhQOhSjUUuf+oEDB0T79u31f//iiy/EV199VeD2inS/9OjRAzt37gQAXLx4EVlZWahQoYISoRjF\n9evX9T+vW7cOvr6+CkZjWA0aNEBiYiJiY2MRGxuL6tWr49ixY6hUqZLSoRnMpUuX9D+vX78e/v7+\nCkZjeFu3bsWsWbOwfv16ODo6Kh2OUQkL/Bb5qJLO/TH5euoAkJ2djZEjR+LEiRMoVaoUZs+erap1\nkIcOHYoTJ07AxsYGnp6e+Omnn+Dm5qZ0WEbh5eWFI0eOwNXVVelQDKZPnz64cOEC7Ozs4O3tjQUL\nFqjqQ6t27drIysrS/5s1a9YM8+fPVzgqw1m3bh3eeecd3L59G87OzvD398eWLVuUDuupbNmyBePG\njdPP/SloqDigUFInIiLj4EKzREQqwqRORKQiTOpERCrCpE5EpCJM6mQ1Xn311TyTpgDgu+++wxtv\nvKFQRESGx6ROViMoKAhhYWF5nvv9998tckYlUUGY1Mlq9O7dG5s2bUJOTg4AIC4uDteuXUPz5s3x\nxhtvoG7dumjXrh06d+6MNWvWAAAmTpyI+vXrw8/PDx9++KGS4RMVi9HWfiEyN66urmjSpAk2b96M\nbt26ISwsDP3798fatWsRHx+Pv//+G4mJiahbty6Cg4ORlJSEP/74A+fPnwcApKSkKHwGREVjS52s\nysNdML///juCgoKwb98+9OvXDwDg5uaG1q1bAwDKly8PR0dHBAcHY926dShTpoxicRMVF5M6WZVu\n3bphx44dOH78ONLT0/XruuQ3sdrOzg5RUVHo06cPwsPD0aFDB1OHS1RiTOpkVcqWLYvWrVtjxIgR\n+hukLVq0wJo1ayCEQGJiIiIjIwEA9+/fx927d9GxY0d88803OHnypIKRExUP+9TJ6gQFBaFXr15Y\nuXIlAHkDdceOHahXrx7c3d3RqFEjODs7IzU1Fd27d0dmZiaEEPj2228VjpyoaFzQiwiyVf7ss88i\nKSkJTZs2xf79+1W1MiNZD7bUiQB06dIFd+/eRVZWFqZOncqEThaLLXUiIhXhjVIiIhVhUiciUhEm\ndSIiFWFSJyJSESZ1IiIVYVInIlKR/wdjx32hRVMVVQAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 328
},
{
"cell_type": "markdown",
"source": [
"
Example 7.11, Page Number: 228
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"V_DD=12; # voltage in volt",
"V_D=7; # voltage in volt",
"R_D=3.3*10**3; # resistance in ohm",
"R_S=2.2*10**3; # resistance in ohm",
"R_1=6.8*10**6; # resistance in ohm",
"R_2=1*10**6; # resistance in ohm",
"",
"#calculation",
"I_D=(V_DD-V_D)/R_D; # drain current in ampere",
"V_S=I_D*R_S; # source voltage in volt",
"V_G=(R_2/(R_1+R_2))*V_DD; # gate voltage in volt",
"V_GS=V_G-V_S; # gate to source voltage in volt",
"",
"# result",
"print \"Drain Current = %.4f Ampere\" %I_D",
"print \"Gate to source voltage = %.4f volts\" %V_GS"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Drain Current = 0.0015 Ampere",
"Gate to source voltage = -1.7949 volts"
]
}
],
"prompt_number": 329
},
{
"cell_type": "markdown",
"source": [
"
Example 7.12, Page Number: 229
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"R_1=2.2*10**6; # resistance in ohm ",
"R_2=R_1; # resistance in ohm",
"V_DD=8; # voltage in volt",
"R_S=3.3*10**3; # resistance in ohm",
"",
"#calculation",
"V_GS=(R_2/(R_1+R_2))*V_DD; #FOR I_D=0A",
"V_G=V_GS; # voltage in volt",
"I_D=(V_G-0)/R_S; #FOR V_GS=0V",
"",
"# result",
"print \"V_GS = %d volt\" %V_GS",
"print \"at V_GS=0V. I_D = %.4f ampere\" %I_D",
"print \"Plotting load line using the value of V_GS=4V at I_D=0\"",
"print \" and I_D=1.2mA at V_GS=0V, we find the intersection of\"",
"print \" load line with transfer characteristic to get Q-point\"",
"print \" values of V_GS=-1.8V and I_D=1.8mA\""
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"V_GS = 4 volt",
"at V_GS=0V. I_D = 0.0012 ampere",
"Plotting load line using the value of V_GS=4V at I_D=0",
" and I_D=1.2mA at V_GS=0V, we find the intersection of",
" load line with transfer characteristic to get Q-point",
" values of V_GS=-1.8V and I_D=1.8mA"
]
}
],
"prompt_number": 330
},
{
"cell_type": "markdown",
"source": [
"
Example 7.13, Page Number: 235
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"I_DSS=10.0*10**-3;",
"V_GS_off=-8.0;",
"V_GS=-3.0;",
"I_D=I_DSS*(1-(V_GS/V_GS_off))**2;",
"print('Drain current when V_GS=-3V is %f Amperes'%I_D)",
"V_GS=3;",
"I_D=I_DSS*(1-(V_GS/V_GS_off))**2;",
"print('Drain current when V_GS=3V is %f Amperes'%I_D)"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Drain current when V_GS=-3V is 0.003906 Amperes",
"Drain current when V_GS=3V is 0.018906 Amperes"
]
}
],
"prompt_number": 331
},
{
"cell_type": "markdown",
"source": [
"