{ "metadata": { "name": "Chapter_4" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "

Chapter 4: Bipolar Junction Transistors (BJTs)

" ] }, { "cell_type": "markdown", "source": [ "

Example 4.1, Page Number: 120

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", "For more information, type 'help(pylab)'." ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "I_C=3.65*10**-3; #collector current in amperes", "I_B=50*10**-6; #base current in amperes", "", "#calculation", "B_DC=I_C/I_B; #B_DC value", "I_E=I_B+I_C; #current in ampere", "", "# result", "print \"B_DC = %d \" %B_DC", "print \"Emitter current = %.4f ampere\" %I_E" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "B_DC = 73 ", "Emitter current = 0.0037 ampere" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "

Example 4.2, Page Number: 121

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "V_BE=0.7; # voltage in volt", "B_DC=150; # voltage in volt", "V_BB=5; # voltage in volt", "V_CC=10; # voltage in volt", "R_B=10*10**3; # resistance in ohm", "R_C=100; # resistance in ohm", "", "#calculation", "I_B=(V_BB-V_BE)/R_B; #base current in amperes", "I_C=B_DC*I_B; #collector current in amperes", "I_E=I_C+I_B; #emitter current in amperes", "V_CE=V_CC-I_C*R_C; #collector to emitter voltage in volts", "V_CB=V_CE-V_BE; #collector to base voltage in volts", "", "# result", "print \"base current = %.5f amperes\" %I_B", "print \"collector current = %.4f amperes\" %I_C", "print \"emitter current = %.5f amperes\" %I_E", "print \"collector to emitter voltage =%.2f volts\" %V_CE", "print \"collector to base voltage =%.2f volts\" %V_CB" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "base current = 0.00043 amperes", "collector current = 0.0645 amperes", "emitter current = 0.06493 amperes", "collector to emitter voltage =3.55 volts", "collector to base voltage =2.85 volts" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "source": [ "

Example 4.3, Page Number: 123

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "", "import pylab as py", "import numpy as np", "", "#variable declaration", "beta=100 # current gain", "print'Ideal family of collector curve'", "", "ic1 = arange(0.00001, 0.45, 0.0005)", "ic2 = arange(0.00001, 0.5, 0.0005)", "ic3 = arange(0.00001, 0.6, 0.0005)", "ic4 = arange(0.00001, 0.7, 0.0005)", "vcc1=ic1*0.5/0.7", "vcc2=ic2*1.35/0.7", "vcc3=ic3*2/0.7", "vcc4=ic4*2.5/0.7", "m1=arange(0.45,5.0,0.0005)", "m2=arange(0.5,5.0,0.0005)", "m3=arange(0.6,5.0,0.0005)", "m4=arange(0.7,5.0,0.0005)", "", "plot(ic1,vcc1,'b')", "plot(ic2,vcc2,'b')", "plot(ic3,vcc3,'b')", "plot(ic4,vcc4,'b')", "plot(m1,0.32*m1/m1,'b')", "plot(m2,0.96*m2/m2,'b')", "plot(m3,1.712*m3/m3,'b')", "plot(m4,2.5*m4/m4,'b')", "", "ylim( (0,3) )", "ylabel('Ic(mA)')", "xlabel('Vce(V)')", "title('Ideal family of collector curve')" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ideal family of collector curve" ] }, { "output_type": "pyout", "prompt_number": 4, "text": [ "" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEXCAYAAABLZvh6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVPW6B/DvIHjhIkop4IBg4gVSAcVIQ0UNTVOizBQz\nUalQj6nVfmrno0dteyzTrWm2Pdb2caeluPV4QbnkJUa8czS8ZB4vKHIVREEhlevv/LFiYGCAQefC\nzPp+nocn1qzLvIy0XtbvXb93KYQQAkREJEtWpg6AiIhMh0mAiEjGmASIiGSMSYCISMaYBIiIZIxJ\ngIhIxpgEZCwtLQ1WVlaorKx86mN5enri8OHDWtc9evQIY8eORbt27TBhwoSnfq+a0tPT4eDggKo7\nnYODg7Fx40a9vgcA7N69G+7u7nBwcMD58+f1ckyVSgV3d3f1ckOfIZGhMAlYOGOdWBQKBRQKhdZ1\nO3fuRF5eHu7du4ft27fr9X07d+6MoqIi9Xs3FMfT+Mtf/oJ//OMfKCoqgq+vr96PD+gn9qlTp2Lh\nwoV6iojkgEnAwhnqpNgUt27dQvfu3WFlZZ6/bkIIpKenw8fHx9ShGJw+rgpNcWx6cub5fyU9kYqK\nCvzlL39Bhw4d0LVrV8TGxmqsv3//PiIjI9GpUye4ublh4cKF6v9xU1NTMWzYMDz77LPo0KEDJk+e\njPv37zf6nosWLcLf/vY3bN++HQ4ODti0aRNu3LjR4LE8PT2xcuVK9OnTBw4ODoiMjERubi5GjRoF\nR0dHhISEoLCwEED9Q1qlpaVwcnLCb7/9pn4tLy8PdnZ2uHv3bp04hRBYunQpPD094ezsjIiICDx4\n8AAlJSVwcHBARUUFfH190a1bN60/56VLlxASEoJnnnkGLi4u+OKLLwAAJSUlmDdvHpRKJZRKJT78\n8EOUlpY2+rkJIfDll1/Cy8sLzz77LCZMmICCggL1+mPHjmHgwIFo3749OnfujB9++AHff/89tm7d\niq+++goODg547bXXAACXL19GcHAw2rdvj169emHfvn3q40ydOhUzZ87E6NGjYW9vD5VKVSeWe/fu\nYdq0aVAqlXBycsLrr78OAPjXv/6FQYMGaWxrZWWFGzduaBz71Vdfhb29PVauXAlXV1eNf6vdu3er\nr6wqKysb/JnJQARZNE9PT3H48GEhhBDr168XPXv2FJmZmeLevXsiODhYWFlZiYqKCiGEEGFhYWLG\njBni4cOHIi8vT7zwwgtiw4YNQgghrl+/Lg4dOiRKS0vFnTt3xODBg8W8efO0vk9tixcvFu+88456\nWZdjDRgwQOTl5YmsrCzRsWNH4e/vL86dOyceP34shg0bJpYsWSKEEOLmzZtCoVCof4bg4GCxceNG\nIYQQs2bNEp9++qn6uF9//bUIDQ3VGuPGjRuFl5eXuHnzpiguLhZvvPGGRswKhUKkpqZq3ffBgwfC\nxcVFrFq1SpSUlIiioiJx+vRpIYQQCxcuFAMGDBB37twRd+7cEQMHDhQLFy4UQgiRmJgo3NzctH6G\nX3/9tRgwYIDIysoSpaWlIioqSoSHhwshhEhLSxMODg4iOjpalJeXi7t374pz584JIYSYOnWq+vhC\nCFFaWiq6du0qvvjiC1FWViZ++eUX4eDgIK5cuSKEECIiIkI4OjqKEydOCCGEePz4cZ2fb/To0WLi\nxImisLBQlJWViaSkJCGEEJs2bRJBQUEa29b8nLQdu2vXruLgwYPq7d98802xfPnyRn9mMhwmAQtX\n88QydOhQ9UldCCEOHDigPoHevn1btGrVSjx69Ei9fuvWrWLo0KFaj7t7927h7++v9X1qW7RokZg8\neXK9MWo71tatW9XL48aNE7NmzVIvf/PNNyIsLEwI0XASOHXqlOjcubN6v379+okdO3ZojWHYsGFi\n/fr16uUrV64IGxsb9XEbSgJbt24Vffv21bqua9euIj4+Xr38888/C09PTyFEw0nA29tb4/PMzs4W\nNjY2ory8XCxbtky88cYbWt9v6tSpYsGCBerlpKQk4eLiorFNeHi4WLx4sRBCOlFHRERoPVbV+1pZ\nWYnCwsI663RJArWPvWDBAjF9+nQhhJQ87ezsRHp6eoM/c9W/ARmGtamvRMh4cnJyNO5G6dy5s/r7\nW7duoaysDK6ururXKisr1dvk5uZi7ty5OHbsGIqKilBZWQknJ6cnikOXYzk7O6u/b9OmjcZy69at\nUVxc3Oj7BAYGok2bNlCpVHBxcUFqaipCQ0O1bpuTkwMPDw/1cufOnVFeXo7c3FyNz0SbjIwMPPfc\nc1rXZWdn1zludnZ2o7GnpaXh9ddf16ijWFtbIzc3F5mZmfW+n7b3r/lvDgAeHh7qGBQKBdzc3Ord\nPyMjA05OTnB0dNTp/WrSduxJkyZh4MCBWL9+PXbt2oV+/fqp42voZ27s34CeHGsCMuLq6or09HT1\ncs3v3d3d0apVK9y9excFBQUoKCjA/fv3cfHiRQDA/Pnz0aJFC/z222+4f/8+tmzZonOhr3Zh+kmO\nJZ6w2W1ERAR+/PFHbNmyBePHj0fLli21btepUyekpaWpl9PT02Ftba2RfOrTuXNn9Ti4Lsft1KmT\nTsdMSEhQ/1sUFBTg4cOH6NSpE9zd3ZGamqp1v9qfdadOnZCRkaHx+d26dQtKpbLRGADp9+LevXta\n6z92dnZ4+PChevn27duNHs/b2xseHh6Ij4/H1q1bMWnSJPW6+n5mJgDDYhKQkbfeegtr165FVlYW\nCgoK8OWXX6rXubq6YsSIEfjoo4/Uf52npqYiKSkJAFBcXAw7Ozu0bdsWWVlZWLFihc7vW/sE/jTH\naur7TZ48Gbt27cJPP/2EKVOm1LtPeHg4Vq9ejbS0NBQXF2P+/PmYOHGiTnc0jRkzBjk5OVizZg1K\nSkpQVFSE5ORk9XGXLl2K/Px85Ofn4/PPP8c777zT6DFnzJiB+fPnqxP1nTt3EBMTAwB4++23cejQ\nIezYsQPl5eW4e/eueu6Cs7OzRkJ68cUXYWtri6+++gplZWVQqVTYv38/Jk6cWOez0sbV1RWjRo3C\nrFmzUFhYiLKyMvXvhK+vLy5duoTz58/j8ePHWLx4sca+9R170qRJ+Prrr3H06FGMHz9ep5+ZDIdJ\nQEbee+89jBw5Er6+vggICMC4ceM0/nLcvHkzSktL4ePjAycnJ4wfP179192iRYvw66+/wtHREWPH\njq2zb0Nq36b6JMequb728WrvW3PZ3d0dffv2hZWVFYKCguo9/vTp0/HOO+9g8ODBeO6552Bra4tv\nvvmm3veoyd7eHgcPHsS+ffvg6uqK7t27q++yWbBgAQICAtCnTx/06dMHAQEBWLBgQaPHnTt3LkJD\nQzFixAi0bdsWAwYMUCcWd3d3xMXF4e9//zueeeYZ+Pv748KFCwCAyMhI/P7772jfvj3eeOMN2NjY\nYN++fYiPj0eHDh0we/ZsbNmyBd27d9f6WWqzZcsW2NjYoGfPnnB2dsbatWsBAN27d8d//ud/4uWX\nX0aPHj0waNCgBv+dqoSHhyMpKQnDhw/XGAZs6Gcmw1GIJ73OJjITkZGRUCqV+Pzzz00dClGzY7Ar\ngcePHyMwMBB+fn7w8fHBZ599pnW7OXPmoFu3bvD19UVKSoqhwiGZSktLw65duxAZGWnqUIiaJYMl\ngdatWyMxMRHnzp3DhQsXkJiYiGPHjmlsExcXh+vXr+PatWv47rvvMHPmTEOFQzK0cOFC9O7dG598\n8onGHTpEVM2gNQFbW1sA0uzNioqKOrcBxsTEICIiAoB0O19hYSFyc3MNGRLJyN/+9jcUFRXVexVK\nRIBB5wlUVlaib9++SE1NxcyZM+v0XsnKytK4h9nNzQ2ZmZkat+WZuu8NEZG50qXka9ArASsrK5w7\ndw6ZmZlISkrS2pekdpDaTvpCmtks+69FixaZPIbm8sXPgp8FP4uGv3Q+Tzf5zP4EHB0d8eqrr+LM\nmTMaryuVSmRkZKiXMzMzdZ7EQkRET89gSSA/P1/d6fHRo0c4ePAg/P39NbYJDQ3F5s2bAQCnTp1C\nu3btdJqhSURE+mGwmkBOTg4iIiJQWVmJyspKvPPOOxg+fDg2bNgAAIiKisLo0aMRFxcHLy8v2NnZ\nYdOmTYYKxyIEBwebOoRmg59FNX4W1fhZNF2znyymUCiaNL5FRES6nzvZNoKISMaYBIiIZIxJgIhI\nxpgEiIhkjEmAiEjGmASIiGSMSYCISMaYBIiIZIxJgIhIxpgEiIhkjEmAiEjGmASIiGSMSYCISMaY\nBIiIZIxJgIhIxpgEiIhkjEmAiEjGmASIiGSMSYCISMaYBIiIZIxJgIhIxpgEiIhkjEmAiEjGmASI\niGSMSYCISMaYBIiIZIxJgIhIxpgEiIhkzGBJICMjA0OHDsXzzz+PXr16Ye3atXW2UalUcHR0hL+/\nP/z9/bF06VJDhUNERFpYG+rANjY2WL16Nfz8/FBcXIx+/fohJCQE3t7eGtsNGTIEMTExhgqDiIga\nYLArARcXF/j5+QEA7O3t4e3tjezs7DrbCSEMFQIRETXCYFcCNaWlpSElJQWBgYEarysUCpw4cQK+\nvr5QKpVYuXIlfHx86uy/ePFi9ffBwcEIDg42cMT68dJLgK0t0Lq1qSMhIkt3964Kd++qmryfQhj4\nT/Hi4mIEBwdjwYIFCAsL01hXVFSEFi1awNbWFvHx8Zg7dy6uXr2qGaBCYZZXC48fA+3bAz/8ALRp\nY+poiEhuQkN1O3caNAmUlZVhzJgxGDVqFObNm9fo9l26dMHZs2fh5ORUHaCZJgGVCvjrX4FTp0wd\nCRHJka7nToPVBIQQiIyMhI+PT70JIDc3Vx1kcnIyhBAaCcCcJSYCZjJqRUQyZrCawPHjx/Hjjz+i\nT58+8Pf3BwAsW7YM6enpAICoqCjs3LkT69evh7W1NWxtbREdHW2ocIxOpQLmzzd1FEREDTN4TeBp\nmeNw0KNHQIcOwO3bgL29qaMhIjky+XCQnJ08CfTpwwRARM0fk4ABJCYCQ4eaOgoiosYxCRiASsWi\nMBGZB9YE9OzhQ6BjRyA3F7CzM3U0RCRXrAmYyIkTgJ8fEwARmQcmAT1jPYCIzAmTgJ6xHkBE5oQ1\nAT0qLgZcXIC8PKlxHBGRqbAmYAInTgB9+zIBEJH5YBLQI9YDiMjcMAnoEesBRGRuWBPQk6IiwNUV\nyM/nQ2SIyPRYEzCy48eBgAAmACIyL0wCesJ6ABGZIyYBPWE9gIjMEWsCevDgAaBUAnfucDiIiJoH\n1gSM6NgxoH9/JgAiMj9MAnrAegARmSsmAT1gPYCIzBVrAk/p/n3AzU2aH9CqlamjISKSsCZgJEeP\nAoGBTABEZJ6YBJ4S6wFEZM6YBJ4S6wFEZM5YE3gKBQWAh4dUD2jZ0tTREBFVY03ACI4eBV58kQmA\niMwXk8BTYD2AiMwdk8BTYD2AiMwdawJP6N49wNMTuHsXsLExdTRERJpMXhPIyMjA0KFD8fzzz6NX\nr15Yu3at1u3mzJmDbt26wdfXFykpKYYKR++SkoCBA5kAiMi8WRvqwDY2Nli9ejX8/PxQXFyMfv36\nISQkBN7e3upt4uLicP36dVy7dg2nT5/GzJkzcerUKUOFpFesBxCRJTDYlYCLiwv8/PwAAPb29vD2\n9kZ2drbGNjExMYiIiAAABAYGorCwELm5uYYKSa9YDyAiS2CwK4Ga0tLSkJKSgsDAQI3Xs7Ky4O7u\nrl52c3NDZmYmnJ2dNbZbvHix+vvg4GAEm/jsm58PpKUB/fqZNAwiIjWVSgWVStXk/QyeBIqLi/Hm\nm29izZo1sLe3r7O+duFCoVDU2aZmEmgOkpKAl14CrI2SQomIGlf7D+QlS5botJ9BbxEtKyvDuHHj\nMHnyZISFhdVZr1QqkZGRoV7OzMyEUqk0ZEh6wXoAEVkKgyUBIQQiIyPh4+ODefPmad0mNDQUmzdv\nBgCcOnUK7dq1qzMU1BwlJrIeQESWwWDzBI4dO4bBgwejT58+6iGeZcuWIT09HQAQFRUFAJg9ezYS\nEhJgZ2eHTZs2oW/fvpoBNrN5Anl5QPfuUl2Aw0FE1Fzpeu7kZLEm2rED+OEHYP9+U0dCRFQ/k08W\ns1QqFesBRGQ5mASaiPUAIrIkHA5qgtxcoGdPqR7QooWpoyEiqh+HgwxApQIGDWICICLLwSTQBKwH\nEJGlYRJoAtYDiMjSMAnoKCdHmiPg62vqSIiI9IdJQEcqFTB4MGDFT4yILAhPaTpiPYCILBGTgI5Y\nDyAiS8QkoIOsLOlZwr17mzoSIiL9YhLQgUoFDBnCegARWR6e1nTAegARWSomAR2wHkBElopJoBEZ\nGcD9+8Dzz5s6EiIi/eNjURrRWD3g5k3p4TK2tkYNi4hIL5gEGtFYPWDCBODSJaB1a6OFRESkN2wl\n3YjnngP27dM+HFRRAXTqBJw8KW1HRNRc6HrubPBKIC8vDzt27EBSUhLS0tKgUCjg4eGBwYMHY/z4\n8ejYsaPeAm6Obt0CiosBHx/t60+eBFxcmACIyHzVmwQiIyORmpqKUaNGYcaMGXB1dYUQAjk5OUhO\nTsZbb70FLy8v/POf/zRmvEalUkl3BSkU2tfv2QO8/roxIyIi0q96h4MuXLiAPn36NLizLts8LVMO\nB02bBrzwAjBzZt11QgBeXsD//A/g52f82IiIGvLUTxar7+Senp6OFStWNLiNpWhofsDFi0BlJVtL\nE5F502meQF5eHr799lsEBQUhODgYt2/fNnRcJpeWBpSUSM8U1mbPHiAsrP6hIiIic1BvTeDBgwfY\ntWsXtm3bhuvXryMsLAw3b95EVlaWMeMzmaqrgPpO8rt3A2vWGDUkIiK9qzcJODs7IyQkBEuWLMGL\nL74IANi1a5fRAjO1qqKwNjdvSp1FX3rJmBEREelfvcNBX3zxBXJzczFr1ix8+eWXSE1NNWZcJiWE\ndCVQ3ySxvXuBsWOBFi2MGxcRkb7VmwTmzZuH06dPY8eOHaioqEBYWBhycnKwfPlyXL161ZgxGt3N\nm0B5OdCtm/b1u3fz1lAisgxNmjF88eJFbNu2Ddu3bzfalYEpbhHduBH45Rfgp5/qrrtzR7o1NDeX\nrSKIqPl66ltEa3vw4AGUSiU+/vhjJCcnN7r99OnT4ezsjN71PI5LpVLB0dER/v7+8Pf3x9KlS3UN\nxeAaqgfs2weMGMEEQESWodEGchs2bMCiRYvQqlUrWP3ZSlOhUODGjRsN7jdt2jR88MEHmDJlSr3b\nDBkyBDExMU0M2bCq6gGLFmlfv3s3EB5u3JiIiAyl0SSwYsUK/Pbbb3j22WebdOBBgwYhLS2twW2a\nY++6qlGurl3rrisuBo4cAX780bgxEREZSqNJ4LnnnkObNm30/sYKhQInTpyAr68vlEolVq5cCZ96\nOrUtXrxY/X1wcDCCDfiYr6q7grTND0hIAAYMABwdDfb2RERPRKVSQaVSNXm/RgvDv/76K6ZOnYoB\nAwagZcuW0k4KBdauXdvowdPS0jB27FhcvHixzrqioiK0aNECtra2iI+Px9y5c7XedWTswvDbbwPD\nhgGRkdrXDRoEzJhhtHCIiJ6IrufORpNAQEAABg8ejN69e8PKygpCCCgUCkRERDR68IaSQG1dunTB\n2bNn4eTkpBmgEZOAEIBSCRw7Vrc9dGmp1Db6t9+kZwgQETVnenmeAABUVFRg1apVegmqptzcXHTs\n2BEKhQLJyckQQtRJAMZ27Zr0qMguXequU6mAHj2YAIjIsjSaBEaNGoUNGzYgNDQUrVq1Ur/e2Ak7\nPDwcR44cQX5+Ptzd3bFkyRKUlZUBAKKiorBz506sX78e1tbWsLW1RXR09FP+KE+voXoAJ4gRkSVq\ndDjI09MTilpnRV1uEdUXYw4HhYdLcwCmTdN8vbIScHOTrga6dzdKKERET0VvNQFTM1YSEAJwdQVO\nnQI8PTXXnTolFYovXTJ4GEREevHUM4Z1udUoMTGxSUE1Z1euSLOAaycAgENBRGS56q0J7N+/H598\n8glefvllBAQEwNXVFZWVlbh9+zbOnDmDQ4cOYejQoRhaX6tNM1Nf11AhpCSwdavxYyIiMrQGh4OK\nioqwd+9eHD9+HLdu3QIAeHh4ICgoCK+99hrs7e0NH6CRhoMmTABGjwZq3/n6++/AK68At27xKWJE\nZD5YE2gCIaQ5AMnJgIeH5rply4DbtwEd5sYRETUbeusiOn/+fBQUFKiXCwoKsGDBgqeLrpm5fBmw\ns6ubAABpKCgszPgxEREZQ6NJIC4uDu3bt1cvt2/fHrGxsQYNytjqqwdkZAA3bgCDBxs/JiIiY2g0\nCVRWVuLx48fq5UePHqG0tNSgQRlbfc8P2LsXGDNGmkVMRGSJGj29vf322xg+fDimT58OIQQ2bdrU\n4DMCzE1lpZQEtHXG2L0b+OADo4dERGQ0OhWG4+PjcejQISgUCoSEhGDkyJHGiA2A4QvDFy9KcwCu\nX9d8/e5dqYlcTg5ga2uwtyciMgi9NZADpP5Bo0aNeuqgmiOVSns9IDZWainNBEBElqzeJGBvb1+n\nZ1AVhUKBBw8eGCwoY0pMBMaNq/s6ZwkTkRzIep5AZSXQoQNw4YL0HIEqDx9KfYRu3gRM3N2aiOiJ\n6G2egCW7eBF45hnNBAAABw4AAQFMAERk+WSdBOqrB3AoiIjkQtZJIDGx7vyA8nJg/37gtddMEhIR\nkVHJNglUVgJJSXWTQFKSdGuou7tJwiIiMirZJoHz54GOHaUCcE0cCiIiOZFtQwRt9QAhgD17gJ9/\nNklIRERGJ9srAW31gLNnpclh3t4mCYmIyOhkmQQqKoCjR+smgaqhID48hojkQpZJ4Nw5qRbg7Kz5\n+p49fHYAEcmLLJOAtnrA1atAQQHwwgsmCYmIyCRkmQS01QOqrgKsZPmJEJFcye6UV14OHDsGDBmi\n+TofI0lEciS7JJCSAri5SXMEqmRnA1euaH+6GBGRJZNdEtBWD4iJAUaPBlq2NElIREQmI7skoK0e\nwKEgIpIrWT1PoLxcah2dmgo8+6z0WmEh0LmzNCRkb6+XtyEiMjmTP09g+vTpcHZ2Ru/evevdZs6c\nOejWrRt8fX2RkpJiqFDUzp4FPDyqEwAAxMVJRWImACKSI4MlgWnTpiEhIaHe9XFxcbh+/TquXbuG\n7777DjNnzjRUKGra6gFsGEdEcmawBnKDBg1CWlpavetjYmIQEREBAAgMDERhYSFyc3PhXHsaL4DF\nixervw8ODkbwE97Gk5gIREVVLz96JD1F7B//eKLDERE1GyqVCiqVqsn7mayLaFZWFtxrNO13c3ND\nZmZmo0ngSZWVASdOAFu3Vr92+DDg5yc9Z5iIyJzV/gN5yZIlOu1n0ruDahctFAbs3HbmjPSwmJrP\nDeZQEBHJncmuBJRKJTIyMtTLmZmZUNZ+4rse1a4HVFQA+/YBCxc2vu+dO1JbiZAQg4VHRGQSJksC\noaGhWLduHSZOnIhTp06hXbt2WoeC9CUxEfiP/6hePn4cUCoBT8/G912+HPjv/9a8q4iIyBIYLAmE\nh4fjyJEjyM/Ph7u7O5YsWYKysjIAQFRUFEaPHo24uDh4eXnBzs4OmzZtMlQoKC0FTp4Etm+vfk3X\noaCSEmDbNqnfkJ+fwUIkItIrXUfXZTFZ7Phx4IMPgF9/lZaFkOoDMTFAA9MYAAAbNwI7dgAN3O1K\nRNTs6HrulMUzhmvXA86fl1pG9+rV8H4VFcBXXwEbNhg0PCIik5FF76Da/YJ0fYzk3r1Au3Z1204T\nEVkKi08CJSXA6dPAoEHVr+nyGEkhgC+/BP76Vz5zmIgsl8UngeRkoEcP6S96ALhxA8jNBQYMaHg/\nlQp48AB47TWDh0hEZDIWnwRq1wN27wZCQ4EWLRre78svgU8+4eMmiciyWfwprnY9QJehoJQU4NIl\n4O23DRoaEZHJWfQtoo8fSxO8srOBtm2lYaAePaT/tmpV/34TJwL9+wMff/yEQRMRmRhvEYVUEPbx\nkRIAILWJeOWVhhNAaipw6BDw/ffGiZGIyJQsejhIWz2gsaGglSuBGTMABweDhkZE1CxY9HBQcLB0\ni+crr0h3+ri5AZmZ1VcGteXmAt7ewP/9H9Cx45PHTERkaiZ/vKSpPX4stY9+6SVpOSEBCAqqPwEA\nwNq1QHg4EwARyYfF1gROnpT6AlUN6zQ2FPTggdQeIjnZOPERETUHFnsloFJV3xpaUiJdCYSG1r/9\nd98BI0ZIjeWIiOTCYpNAYmJ1UTgxUbpLyMVF+7YlJcDq1dLkMCIiObHIJPDwodQ2euBAabmxZwf8\n+CPQpw+fF0BE8mORNYGTJwFfX8DeXmoHvXev9FAYbdgumojkzCKvBGrWA06fBjp0ALy8tG/LdtFE\nJGcWmQRq1gMaGgpiu2gikjuLSwJ//AGcOyfVA4RoOAmwXTQRyZ3FJYETJwB/f8DWVuoEWl5ef8GX\n7aKJSO4s7vRXs3V01QQxbUM9bBdNRGSBSaBm07g9e+ofClq+HPjww4Y7ihIRWTqLaiBXXCxNCLtz\nB8jLAwICgJwcwLrWjbCpqUBgIHDzJruFEpFlkmUDuePHgX79gDZtpKuAsWPrJgCA7aKJiKpY1GSx\nmvWAPXuk4Z7acnOB7duldtFERHJnUVcCVfWA/HypbURISN1t2C6aiKiaxdQEiooAV1cpAURHA/v3\nAzt3am7z4IHUJTQ5md1Ciciyya4mcOyY9HD41q3rf3YA20UTEWkyaBJISEhAz5490a1bNyxfvrzO\nepVKBUdHR/j7+8Pf3x9Lly594veqqgf88Yf0/auvaq5nu2gioroMVhiuqKjA7NmzcejQISiVSvTv\n3x+hoaHw9vbW2G7IkCGIiYl56vdTqaS7fn7+GXjxRaB9e831bBdNRFSXwa4EkpOT4eXlBU9PT9jY\n2GDixInYu3dvne30UZK4fx+4fFm691/bUFBVu+hPP33qtyIisigGuxLIysqCu7u7etnNzQ2nT5/W\n2EahUODEiRPw9fWFUqnEypUr4ePjU+dYixcvVn8fHByM4Kr7QP907BjwwgtSD6DYWKknUE1790pX\nBmwXTUQXgP+BAAAMkklEQVSWSqVSQaVSNXk/gyUBhQ69mfv27YuMjAzY2toiPj4eYWFhuHr1ap3t\naiYBbarqAUeOAN27A0pl9bqqdtGffcZ20URkuWr/gbxkyRKd9jPYcJBSqURGRoZ6OSMjA25ubhrb\nODg4wNbWFgAwatQolJWV4d69e01+r6r5AdqGgtgumoiofgZLAgEBAbh27RrS0tJQWlqK7du3IzQ0\nVGOb3NxcdU0gOTkZQgg4OTk16X0KC4ErV6R2EdoaxrFdNBFR/Qw2HGRtbY1169Zh5MiRqKioQGRk\nJLy9vbHhz4f5RkVFYefOnVi/fj2sra1ha2uL6OjoJr/P0aPS3UAXLwJt2wI9elSvY7toIqKGmf2M\n4Y8+Ap55RuogqlAAy5ZVr5s4UZpA9vHHRgiUiKgZkc2M4ap6QO2hoNRU4NAh4P33TRYaEVGzZ9ZJ\n4N494Pp1wN5e6h3Ur1/1OraLJiJqnFm3kj56FBgwQJobEBZWXfxlu2giIt2Y9ZVA1fyA2kNBbBdN\nRKQbs04CKhXQq5c0JDR4sPTagwfAhg0sBhMR6cJsk8Ddu8CNG9Jzgl99FbCxkV5nu2giIt2ZbU0g\nKQl46SVg3z5g1izptap20bGxpo2NiMhcmG0SSEyUuoauXi3VBAD9toueN0+6+8jT8+mPRUTUXJlt\nElCpgDfekOYI2NlVt4v+c0LyEyspAT74AEhIkO44sjbbT4iIqHFmeYq7cwe4dQs4f766YZw+2kVn\nZQHjxkldSC9d4hwDIjJfixbptp1ZFoaTkoCBA4FffgHGjq1uF/3pp0/eLvroUemZBGFh0gPqmQCI\nSA7M8kogMRFwcZFmCD/zjLT8pO2ihQDWrQOWLgU2bwZGjtR/vEREzZVZJgGVCujSpXoo6EnbRT96\nBERFARcuACdP8rZSIpIfs+simpcnPT2sRQupVfTdu9KQUGoq0KqV7sdNS5MKy97ewPffA38+24aI\nyCJYbBfRI0cAHx/pSqBzZ2D5cuDDD5uWAA4dkp5BMGWKdFspEwARyZXZDQclJkpXAWFh1e2iv/9e\nt32FkLqLrloFREdLfYeIiOTM7IaDfHyAggLp5L9unVQYXrq08eMUFwORkVKriV27AHd3AwZNRGRi\nug4HmdWVwO3bQGYm4Owsnfx1bRd9/brUZbR/f+lW0NatDR8rEZE5MKuawJEjgKurdEL/5hvd2kXH\nxkpzCmbNAjZuZAIgIqrJrK4EquYDjBghPT84Obn+bSsrgf/6L6mNxJ49UiIgIiJNZpUEDh4EysqA\nX39tuF30/fvSnT/5+cD//q909UBERHWZzXBQdjaQkyPdFbRmjTQ5TJvLl6X2D25u0pUDEwARUf3M\nJgkcOQK0aSP19KmvXfSuXdITxj77DPj2W6BlS+PHSURkTsxmOCguTmrzEBsrPT2spooKYOFC4Kef\ngPh4ICDANDESEZkbs5kn4OwstXhu2VLq81PVLfTePWDSJOk5AP/+N9Chg2njJSJqDiyqbURWljRB\n7P59zXbR589L9/4//7xUNGYCICJqGrMYDoqLk275bNGiul301q3A3LnA2rXSfAEiImo6s7gS2LpV\nmuT1179KyeCjj6QawKFD8koAKpXK1CE0G/wsqvGzqMbPoukMmgQSEhLQs2dPdOvWDcuXL9e6zZw5\nc9CtWzf4+voiJSVF6zanT0vPCggJkb5+/126/9/X15DRNz/8Ba/Gz6IaP4tq/CyazmBJoKKiArNn\nz0ZCQgJ+//13bNu2DZcvX9bYJi4uDtevX8e1a9fw3XffYebMmVqP9egRMGECEBQkzfyNjQWcnAwV\nORGRfBgsCSQnJ8PLywuenp6wsbHBxIkTsXfvXo1tYmJiEBERAQAIDAxEYWEhcnNztR5v1y5g9Wqp\nFUSLFoaKmohIZoSB7NixQ7z77rvq5S1btojZs2drbDNmzBhx/Phx9fLw4cPFmTNnNLYBwC9+8Ytf\n/HqCL10Y7O4gRdV9nI0Qte5jrb1f7fVERKQ/BhsOUiqVyMjIUC9nZGTAzc2twW0yMzOhVCoNFRIR\nEdVisCQQEBCAa9euIS0tDaWlpdi+fTtCQ0M1tgkNDcXmzZsBAKdOnUK7du3g7OxsqJCIiKgWgw0H\nWVtbY926dRg5ciQqKioQGRkJb29vbNiwAQAQFRWF0aNHIy4uDl5eXrCzs8OmTZsMFQ4REWnRrHsH\nJSQkYN68eaioqMC7776LTz/91NQhmcT06dMRGxuLjh074uLFi6YOx6QyMjIwZcoU5OXlQaFQ4P33\n38ecOXNMHZZJPH78GEOGDEFJSQlKS0vx2muv4YsvvjB1WCZVUVGBgIAAuLm5Yd++faYOx2Q8PT3R\ntm1btGjRAjY2Nkhu4AlczTYJVFRUoEePHjh06BCUSiX69++Pbdu2wdvb29ShGd3Ro0dhb2+PKVOm\nyD4J3L59G7dv34afnx+Ki4vRr18/7NmzR5a/FwDw8OFD2Nraory8HEFBQVi5ciWCgoJMHZbJrFq1\nCmfPnkVRURFiYmJMHY7JdOnSBWfPnoWTDhOqmm3bCF3mGcjFoEGD0L59e1OH0Sy4uLjA78+HSdjb\n28Pb2xvZ2dkmjsp0bG1tAQClpaWoqKjQ6X96S5WZmYm4uDi8++67vKsQut9Z2WyTQFZWFtzd3dXL\nbm5uyMrKMmFE1NykpaUhJSUFgYGBpg7FZCorK+Hn5wdnZ2cMHToUPj4+pg7JZD788EOsWLECVlbN\n9rRmNAqFAi+//DICAgLw/fffN7hts/20dJ1nQPJUXFyMN998E2vWrIG9vb2pwzEZKysrnDt3DpmZ\nmUhKSpJt75z9+/ejY8eO8Pf351UAgOPHjyMlJQXx8fH49ttvcfTo0Xq3bbZJQJd5BiRPZWVlGDdu\nHCZPnoywsDBTh9MsODo64tVXX8WZM2dMHYpJnDhxAjExMejSpQvCw8Pxyy+/YMqUKaYOy2Rc/3y4\neocOHfD66683WBhutklAl3kGJD9CCERGRsLHxwfz5s0zdTgmlZ+fj8LCQgDAo0ePcPDgQfj7+5s4\nKtNYtmwZMjIycPPmTURHR2PYsGHqOUhy8/DhQxQVFQEA/vjjDxw4cAC9e/eud/tmmwRqzjPw8fHB\nhAkTZHsHSHh4OAYOHIirV6/C3d1d1vMpjh8/jh9//BGJiYnw9/eHv78/EhISTB2WSeTk5GDYsGHw\n8/NDYGAgxo4di+HDh5s6rGZBzsPJubm5GDRokPr3YsyYMRgxYkS92zfbW0SJiMjwmu2VABERGR6T\nABGRjDEJEBHJGJMAEZGMMQmQrA0bNgwHDhzQeO3rr7/GrFmzmnysdevW4V//+hc2b96MSZMmaazL\nz89Hx44dUVpairfeegs3b958qriJ9IVJgGQtPDwc0dHRGq9t3769zkm8MUIIbNy4UT2B7eDBg3j0\n6JF6/c6dOxEaGoqWLVvivffew+rVq/USP9HTYhIgWRs3bhxiY2NRXl4OQOpHlJ2djaCgICxfvhx9\n+vSBn58fPvvsMwBAamoqRo0ahYCAAAwePBhXrlwBIM1f6NmzJ6ytrdG2bVsMGTJEo5VxdHQ0wsPD\nAQDBwcGIi4sz8k9KpB2TAMmak5MTXnjhBfVJOTo6GhMmTEB8fDxiYmKQnJyMc+fOqZ9l8f777+Ob\nb77BmTNnsGLFCvWw0bFjx9C/f3/1cWteYWRnZ+PatWsYNmwYAMDGxgZKpRKXL1825o9KpBWTAMle\nzRP29u3bER4ejsOHD2P69Olo3bo1AKBdu3YoLi7GyZMnMX78ePj7+2PGjBm4ffs2ACA9PR0uLi7q\nY44ePRrHjx9HUVER/v3vf+PNN9/UmMXaqVMnpKWlGe+HJKoHkwDJXmhoKA4fPoyUlBQ8fPhQ3X+n\n9mT6yspKtGvXDikpKeqvS5cuqdfX3L5NmzZ45ZVXsGvXLnViqUkIwZbH1Czwt5Bkz97eHkOHDsW0\nadPUBeGQkBBs2rRJXdwtKChA27Zt0aVLF+zcuROAdCK/cOECAMDDw0N9VVAlPDwcq1atQl5eHl58\n8UWNdTk5OfDw8DD0j0bUKCYBIkgn7IsXL6r/Yh85ciRCQ0MREBAAf39//P3vfwcA/PTTT9i4cSP8\n/PzQq1cv9SMMg4KC6rRxfvnll5GTk4MJEyZovF5WVobMzEz07NnTCD8ZUcPYQI5ID4QQ6Nu3L06f\nPo2WLVs2uO2BAwcQGxuLNWvWGCk6ovrxSoBIDxQKBd577z389NNPjW77z3/+Ex9++KERoiJqHK8E\niIhkjFcCREQyxiRARCRjTAJERDLGJEBEJGNMAkREMsYkQEQkY/8PuzhceEoO66YAAAAASUVORK5C\nYII=\n" } ], "prompt_number": 4 }, { "cell_type": "markdown", "source": [ "

Example 4.4, Page Number: 125

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "V_CE_sat=0.2; # voltage in volt", "V_BE=0.7; # voltage in volt", "V_BB=3; # voltage in volt", "V_CC=10; # voltage in volt", "B_DC=50; # voltage in volt", "R_B=10*10**3; # resistance in ohm", "R_C=1*10**3; # resistance in ohm", "", "#calculation", "I_C_sat=(V_CC-V_CE_sat)/R_C; # saturation current", "I_B=(V_BB-V_BE)/R_B; # base current", "I_C=B_DC*I_B; # current in ampere", "", "# result", "if I_C>I_C_sat:", " print \"transistor in saturation\"", "else:", " print \"transistor not in saturation\"" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "transistor in saturation" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "source": [ "

Example 4.5, Page Number: 127

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable declaration", "P_D_max=250*10**-3; #max power rating of transistor in watts", "V_CE=6; #voltage in volt", "", "#Calculation", "I_Cu=P_D_max/V_CE; #Current (Amp)", "I_C=I_Cu*1000;", "", "#Result", "print \"collector current that can be handled by the transistor = %.1f mA\" %I_C", "print \"\\nRemember that this is not necessarily the maximum IC. The transistor\"", "print \"can handle more collectore current if Vce is reduced as long as PDmax\"", "print \"is not exceeded.\"" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "collector current that can be handled by the transistor = 41.7 mA", "", "Remember that this is not necessarily the maximum IC. The transistor", "can handle more collectore current if Vce is reduced as long as PDmax", "is not exceeded." ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "source": [ "

Example 4.6, Page Number: 127

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable declaration", "P_D_max=800*10**-3; #max power rating of transistor in watts", "V_BE=0.7; #voltage in volt", "V_CE_max=15; #voltage in volt", "I_C_max=100*10**-3; #Current (Amp)", "V_BB=5; #voltage in volt", "B_DC=100; #voltage in volt", "R_B=22*10**3; # resistance in ohm", "R_C=10**3; # resistance in ohm", "", "#Calculation", "I_B=(V_BB-V_BE)/R_B; # base current", "I_C=B_DC*I_B; #collector current ", "V_R_C=I_C*R_C; #voltage drop across R_C", "V_CC_max=V_CE_max+V_R_C; #Vcc max in volt", "P_D=I_C*V_CE_max; #max power rating", "", "#Result", "if P_DExample 4.7, Page Number: 128

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable declaration", "df=5*10**-3; #derating factor in watts per degree celsius", "T1=70; #temperature 1", "T2=25; #temperature 2", "P_D_max=1; #in watts", "", "#Calculation", "del_P_D=df*(T1-T2); #change due to temperature", "P_D=P_D_max-del_P_D; # power dissipation", "", "#Result", "print \"Power dissipated max at a temperature of 70 degree celsius = %.3f watts\" %P_D" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power dissipated max at a temperature of 70 degree celsius = 0.775 watts" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "source": [ "

Example 4.8, Page Number: 130

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable declaration", "R_C=1*10**3; #resistance in ohm", "r_e=50; #resistance in ohm", "V_b=100*10**-3; #voltage in volt", "", "#Calculation", "A_v=R_C/r_e; #voltage gain", "V_out=A_v*V_b; #voltage in volt", "", "#Result", "print \"voltage gain = %d \" %A_v", "print \"AC output voltage = %d volt\" %V_out" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "voltage gain = 20 ", "AC output voltage = 2 volt" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "source": [ "

Example 4.9, Page Number: 132

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable declaration", "V_CC=10.0; #voltage in volt", "B_DC=200.0; #voltage in volt", "R_C=1.0*10**3; #resistance in ohm", "V_IN=0.0; #voltage in volt", "", "#Calculation", "V_CE=V_CC; #equal voltage", "print \"when V_IN=0, transistor acts as open switch(cut-off) and collector emitter voltage = %.2f volt\" %V_CE", "#now when V_CE_sat is neglected", "I_C_sat=V_CC/R_C; #saturation current", "I_B_min=I_C_sat/B_DC; #minimum base current", "print \"\\nminimum value of base current to saturate transistor = %.5f ampere\" %I_B_min", "V_IN=5; #voltage in volt", "V_BE=0.7; #voltage in volt", "V_R_B=V_IN-V_BE; #voltage across base resiatance", "R_B_max=V_R_B/I_B_min;", "", "", "#Result", "kw=round (R_B_max)", "print \"\\nmaximum value of base resistance when input voltage is 5V = %d ohm\" %kw" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "when V_IN=0, transistor acts as open switch(cut-off) and collector emitter voltage = 10.00 volt", "", "minimum value of base current to saturate transistor = 0.00005 ampere", "", "maximum value of base resistance when input voltage is 5V = 86000 ohm" ] } ], "prompt_number": 10 } ] } ] }