{ "metadata": { "name": "Chapter_3" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "

Chapter 3: Special-purpose Diodes

" ] }, { "cell_type": "markdown", "source": [ "

Example 3.1, Page Number:88

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", "For more information, type 'help(pylab)'." ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "delVZ=50*10**-3; #voltage in volts, from graph", "delIZ=5*10**-3; #current in amperes, from rgraph", "", "#calculation", "ZZ=delVZ/delIZ; #zener impedence", "", "# result", "print \"zener impedance = %d ohm \" %ZZ" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "zener impedance = 10 ohm " ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "

Example 3.2, Page Number:89

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "I_ZT=37*10**-3; #IN AMPERES", "V_ZT=6.80; #IN VOLTS", "Z_ZT=3.50; #IN OHMS", "I_Z=50*10**-3; #IN AMPERES", "", "#calculation", "DEL_I_Z=I_Z-I_ZT; #change current", "DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage", "V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals", "print \"voltage across zener terminals when current is 50 mA = %.3f volts\" %V_Z", "I_Z=25*10**-3; #IN AMPERES", "DEL_I_Z=I_Z-I_ZT; #change current", "DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage", "V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals", "", "#result", "print \"voltage across zener terminals when current is 25 mA = %.3f volts\" %V_Z" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "voltage across zener terminals when current is 50 mA = 6.845 volts", "voltage across zener terminals when current is 25 mA = 6.758 volts" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "source": [ "

Example 3.3, Page Number:90

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "V_Z=8.2; #8.2 volt zener diode", "TC=0.0005; #Temperature coefficient (per degree celsius)", "T1=60; #Temperature 1 in celsius", "T2=25; #Temperature 2 in celsius", "", "#calculation", "DEL_T=T1-T2; #change in temp", "del_V_Z=V_Z*TC*DEL_T; #change in voltage", "voltage=V_Z+del_V_Z; #zener voltage", "", "#result", "print \"zener voltage at 60 degree celsius = %.3f volt\" %voltage" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "zener voltage at 60 degree celsius = 8.343 volt" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "source": [ "

Example 3.4, Page Number:90

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "P_D_max=400*10**-3; #power in watts", "df=3.2*10**-3 #derating factor in watts per celsius", "del_T=(90-50); #in celsius, temperature difference", "", "#calculation", "P_D_deru=P_D_max-df*del_T; #power dissipated", "P_D_der=P_D_deru*1000;", "", "#result", "print \"maximum power dissipated at 90 degree celsius = %d mW\" %P_D_der" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum power dissipated at 90 degree celsius = 272 mW" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "source": [ "

Example 3.5, Page Number: 92

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "V_Z=5.1;", "I_ZT=49*10**-3;", "I_ZK=1*10**-3;", "Z_Z=7;", "R=100;", "P_D_max=1;", "", "#calculation", "V_out=V_Z-(I_ZT-I_ZK)*Z_Z; #output voltage at I_ZK", "V_IN_min=I_ZK*R+V_out; #input voltage", "I_ZM=P_D_max/V_Z; #current", "V_out=V_Z+(I_ZM-I_ZT)*Z_Z; #output voltage at I_ZM", "V_IN_max=I_ZM*R+V_out; #max input voltage", "", "#result", "print \"maximum input voltage regulated by zener diode = %.3f volts\" %V_IN_max", "print \"minimum input voltage regulated by zener diode = %.3f volts\" %V_IN_min" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum input voltage regulated by zener diode = 25.737 volts", "minimum input voltage regulated by zener diode = 4.864 volts" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "source": [ "

Example 3.6, Page Number: 93

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "V_Z=12.0; #voltage in volt", "V_IN=24.0; #ip voltage in volt", "I_ZK=0.001; #current in ampere", "I_ZM=0.050; #current in ampere ", "Z_Z=0; #impedence", "R=470; #resistance in ohm", "", "#calculation", "#when I_L=0, I_Z is max and is equal to the total circuit current I_T", "I_T=(V_IN-V_Z)/R; #current", "I_Z_max=I_T; #max current", "if I_Z_maxExample 3.7, Page Number: 94

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "V_IN=24.0; #voltage in volt", "V_Z=15.0; #voltage in volt", "I_ZK=0.25*10**-3; #current in ampere", "I_ZT=17*10**-3; #current in ampere", "Z_ZT=14.0; #impedence", "P_D_max=1.0; #max power dissipation", "", "#calculation", "V_out_1=V_Z-(I_ZT-I_ZK)*Z_ZT; #output voltage at I_ZK", "print \"output voltage at I_ZK = %.2f volt\" %V_out_1", "I_ZM=P_D_max/V_Z;", "", "V_out_2=V_Z+(I_ZM-I_ZT)*Z_ZT; #output voltage at I_ZM", "print \"output voltage a I_ZM = %.2f volt\" %V_out_2", "R=(V_IN-V_out_2)/I_ZM; #resistance", "print \"value of R for maximum zener current, no load = %.2f ohm\" %R", "print \"closest practical value is 130 ohms\"", "R=130.0;", "#for minimum load resistance(max load current) zener current is minimum (I_ZK)", "I_T=(V_IN-V_out_1)/R; #current", "I_L=I_T-I_ZK; #current", "R_L_min=V_out_1/I_L; #minimum load resistance", "", "#result", "print \"minimum load resistance = %.2f ohm\" %R_L_min" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "output voltage at I_ZK = 14.77 volt", "output voltage a I_ZM = 15.70 volt", "value of R for maximum zener current, no load = 124.57 ohm", "closest practical value is 130 ohms", "minimum load resistance = 208.60 ohm" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "source": [ "

Example 3.8, Page Number: 96

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#variable declaration", "V_p_in=10.0; #Peak input voltage", "V_th=0.7; #forward biased zener", "V_Z1=5.1;", "V_Z2=3.3;", "", "V_p_in=20.0;", "V_Z1=6.2;", "V_Z2=15.0;", "", "#result", "print('max voltage = %.1f V'%(V_Z1+V_th))", "print('min voltage = %.1f V'%(-(V_Z2+V_th)))" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "max voltage = 6.9 V", "min voltage = -15.7 V" ] } ], "prompt_number": 9 } ] } ] }