{ "metadata": { "name": "Chapter_15" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "

Chapter 15: Active Filters

" ] }, { "cell_type": "markdown", "source": [ "

Example 15.1, Page Number: 491

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", "For more information, type 'help(pylab)'." ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "", "f0=15*10**3; #center frequency in hertz", "BW=1*10**3;", "Q=f0/BW;", "if Q>10:", " print('narrow band filter, Q = %d'%Q)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "narrow band filter, Q = 15" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "

Example 15.2, Page Number: 494

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "R2=10*10**3;", "R1=0.586*R2; #FOR BUTTERWORTH RESPONSE", "print('R1 in ohms =%d'%R1)", "print('5.6kilo ohm will be ideally close to maximally flat butterworth response')" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R1 in ohms =5860", "5.6kilo ohm will be ideally close to maximally flat butterworth response" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "source": [ "

Example 15.3, Page Number: 496

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "R_A=1*10**3;", "R2=1*10**3;", "R_B=R_A;", "R=R_A;", "C_A=0.022*10**-6;", "C_B=C_A;", "C=C_A;", "f_c=1/(2*math.pi*R*C); #critical frequency", "R1=0.586*R2; #for butterworth response", "print('critical frequency in hertz =%f'%f_c)", "print('value of R1 in ohms = %d'%R1)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "critical frequency in hertz =7234.315595", "value of R1 in ohms = 586" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "source": [ "

Example 15.4, Page Number: 498

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "f_c=2860.0;", "R=1.8*10**3;", "C=1/(2*math.pi*f_c*R);", "R2=R;", "R1=0.152*R2; #BUTTERWORTH RESPONSE IN FIRST STAGE", "R4=R;", "R3=1.235*R4; #BUTTERWORTH RESPONSE IN SECOND STAGE", "C=C*10**8", "print('capacitance in farads = %f *10^-8'%C);", "print('R1 in ohms for butterworth response in first stage = %.1f'%R1)", "print('R3 in ohms for butterworth response in second stage = %d'%R3)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "capacitance in farads = 3.091588 *10^-8", "R1 in ohms for butterworth response in first stage = 273.6", "R3 in ohms for butterworth response in second stage = 2223" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "source": [ "

Example 15.5, Page Number: 500

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "f_c=10*10**3; #critical frequency in hertz", "R=33*10**3; #Assumption", "R2=R;", "C=1/(2*math.pi*f_c*R);", "R1=0.586*R2; #for butterworth response", "C=C*10**10", "print('Capacitance in Farads = %f * 10^-10'%C)", "print('R1 in ohms taking R2=33kilo-ohms = %d'%R1)", "R1=3.3*10**3; #Assumption", "R2=R1/0.586; #butterworth response", "print('R2 in ohms taking R1=3.3kilo-ohms = %f'%R2)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance in Farads = 4.822877 * 10^-10", "R1 in ohms taking R2=33kilo-ohms = 19338", "R2 in ohms taking R1=3.3kilo-ohms = 5631.399317" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "source": [ "

Example 15.6, Page Number:503

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "R1=68.0*10**3;", "R2=180.0*10**3;", "R3=2.7*10**3;", "C=0.01*10**-6;", "f0=(math.sqrt((R1+R3)/(R1*R2*R3)))/(2*math.pi*C);", "A0=R2/(2*R1);", "Q=math.pi*f0*C*R2;", "BW=f0/Q;", "print('center frequency in hertz = %f'%f0)", "print('maximum gain = %f'%A0)", "print('bandwidth in hertz = %f'%BW)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "center frequency in hertz = 736.134628", "maximum gain = 1.323529", "bandwidth in hertz = 176.838826" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "source": [ "

Example 15.7, Page Number: 504

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "R4=1000.0;", "C1=0.022*10**-6;", "R7=R4;", "C2=C1;", "R6=R4;", "R5=100.0*10**3;", "f_c=1/(2*math.pi*R4*C1); #critical frequency in hertz for each integrator", "f0=f_c #center frequency", "Q=(1+(R5/R6))/3;", "BW=f0/Q;", "print('center frequency in hertz = %f'%f0)", "print('value of Q = %f'%Q)", "print('bandwidth in hertz = %f'%BW)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "center frequency in hertz = 7234.315595", "value of Q = 33.666667", "bandwidth in hertz = 214.880661" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "source": [ "

Example 15.8, Page Number: 507

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "R4=12.0*10**3;", "C1=0.22*10**-6;", "R7=R4;", "C2=C1;", "R6=3.3*10**3;", "Q=10;", "f0=1/(2*math.pi*R7*C2);", "R5=(3*Q-1)*R6;", "print('center frequency in hertz = %f'%f0)", "print('R5 in ohms = %d'%R5)", "print('Nearest value is 100 kilo-ohms')" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "center frequency in hertz = 60.285963", "R5 in ohms = 95700", "Nearest value is 100 kilo-ohms" ] } ], "prompt_number": 9 } ] } ] }