"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"import pylab",
"import numpy",
"",
"",
"R_i=10.0*10**3;",
"C=0.01*10**-6;",
"V_in=2.5-(-2.5);",
"PW=100.0*10**-6; #pulse width",
"T=2*PW;",
"A=2.5;",
"op_change_cap_charge=-V_in/(R_i*C);",
"op_change_cap_discharge=V_in/(R_i*C);",
"print('rate of change of output voltage with respect to time when capacitor is charging = %.1f V/sec'%op_change_cap_charge)",
"print('rate of change of output voltage with respect to time when capacitor is discharging =%.1f V/sec'%op_change_cap_discharge)",
"del_V_OUT=op_change_cap_discharge*PW;",
"print('\\n\\nwhen input is positive, the slope is negative,\\nwhen input is negative, the slope is negative. \\nSo, the output is a triangular wave varying from zero to %.1f V'%(-del_V_OUT))",
"",
"##############PLOT#############################",
"t = arange(0.0, 10.0, 0.0005)",
"t1= arange(10.0, 20.0, 0.0005)",
"t2= arange(20.0, 30.0, 0.0005)",
"t3= arange(30.0, 40.0, 0.0005)",
"",
"k = arange(0.0001, 10.0, 0.0005)",
"k1= arange(10.0, 20.0, 0.0005)",
"k2= arange(20.0, 30.0, 0.0005)",
"k3= arange(30.0,40.0, 0.0005)",
"",
"m=arange(-2.5,2.5,0.0005)",
"x1=(0.001*m)/m",
"x5=(10*m)/m",
"x10=(20*m)/m",
"x15=(30*m)/m",
"x25=(39.99*m)/m",
"",
"",
"subplot(211)",
"plot(k,2.5*k/k,'b')",
"plot(k1,-2.5*k1/k1,'b')",
"plot(k2,2.5*k2/k2,'b')",
"plot(k3,-2.5*k3/k3,'b')",
"plot(x1,m,'b')",
"plot(x5,m,'b')",
"plot(x10,m,'b')",
"plot(x15,m,'b')",
"plot(x25,m,'b')",
"",
"ylim( (-3,3) )",
"ylabel('Vin')",
"xlabel('us')",
"title('Input to Opamp Integrator')",
"",
"subplot(212)",
"plot(t,(-0.5*t),'b')",
"plot(t1,(0.5*t-5),'b')",
"plot(t2,(-0.5*t),'b')",
"plot(t3,(0.5*t-5),'b')",
"",
"ylim( (-5,0) )",
"ylabel('Vout')",
"xlabel('us')",
"title('Output of an Integrator')"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"rate of change of output voltage with respect to time when capacitor is charging = -50000.0 V/sec",
"rate of change of output voltage with respect to time when capacitor is discharging =50000.0 V/sec",
"",
"",
"when input is positive, the slope is negative,",
"when input is negative, the slope is negative. ",
"So, the output is a triangular wave varying from zero to -5.0 V"
]
},
{
"output_type": "pyout",
"prompt_number": 185,
"text": [
""
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAESCAYAAAD0aQL3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVGX7B/DvsLiCiKIgi6IiKopAmrglbpiVmruiELn0\ne8uS1CQlM5cMRaSyLCv3sMTMUCtQFNfcsBSzXN83UVRSEUVAZJm5f388MbEqDMw5Z2buz3Vx6Qwz\n59w8DM99zrOqiIjAGGPM5JjJHQBjjDF5cAJgjDETxQmAMcZMFCcAxhgzUZwAGGPMRHECYIwxE8UJ\nwES5uroiMTFR7+dZsGABgoKCnhjLvn37dD4HESEyMhLu7u6oV68eWrRogXfeeQf5+fk6H1MqBw4c\ngIuLS6Vem5KSAjMzM2g0Gj1HVbHq/q6YsnACMFEqlQoqlUruMACIWKozHSUkJASrV69GdHQ0srOz\nER8fj8TERIwZM6YGo1QOfU3dUavVT3xNdX5XhYWFOr2P6RExk+Tq6kqJiYlERLR+/Xrq2bMnzZo1\ni2xtbally5YUHx+vfa2fnx/NmTOHunbtSg0aNKAXX3yRMjIyiIho//795OzsXOLYLVq0oL1791J8\nfDzVqlWLLC0tycrKiry9vcvEERgYSGZmZlS3bl2ysrKiyMhIIiLasWMHeXh4UMOGDalPnz50/vz5\ncn+OS5cukbm5OZ08ebLE86mpqVS7dm3av38/EREFBwfTf/7zH/L39ydra2vy8/Ojq1eval8fEhJC\nLi4u1KBBA+rcuTMdPnxY+7358+fTqFGjKDAwkKytrcnT05MuXbpE4eHh1LRpU2revDklJCRUqrxK\nK11+fn5+NG/ePOrZsydZW1vTwIEDKT09nYiIXFxcSKVSkZWVFVlZWdHx48eJiGjt2rXUvn17srW1\npWeffbbEz7V7925yd3cnGxsbmjp1KvXu3ZvWrFlDROL33qNHD5oxYwY1btyY5s2bR//73/+ob9++\n1LhxY7Kzs6MJEybQ/fv3df5dtWjRgiIiIsjT05Pq1KlDarW63HJg8uAEYKJKJwBLS0tas2YNaTQa\nWrVqFTk6Ompf6+fnR05OTvTnn39STk4OjRw5kgIDA4mo/ARQ/NgLFiygoKCgSsdCRHTx4kWqX78+\n7d27lwoLC2nZsmXk5uZG+fn5Zd67atUqcnV1Lfe4fn5+FBYWRkQiAVhbW9Phw4cpLy+P3nzzTerV\nq5f2tZs2baKMjAxSq9UUFRVFDg4OlJeXR0QiAdSpU4cSEhKosLCQXnrpJWrRogWFh4dTYWEhrV69\nmlq2bFmp8iqtvATg5uZGly9fptzcXOrTpw/NmTOHiIhSUlJIpVKVqES3b99Obm5udOHCBVKr1bR4\n8WLq0aMHERHduXOHGjRoQLGxsaRWq2nFihVkaWlJa9euJSLxe7ewsKCVK1eSWq2m3Nxc+u9//0t7\n9+6l/Px8unPnDvXu3ZumT59e5d9VQUEBEYkE4OPjQ9evX6dHjx6VWwZMPtwExAAALVq0wOTJk6FS\nqfDSSy8hLS0Nt2/fBgDtcx4eHqhXrx7ef/99fPfdd5VqCiBxkVGlWLZs2YLBgwejf//+MDc3x6xZ\ns5Cbm4ujR4+WeW16ejocHBzKPU6zZs1w9+5d7ePBgwejV69eqFWrFj744AMcO3YMN27cAABMmDAB\ntra2MDMzw8yZM5GXl4eLFy9q39u7d2/4+/vD3Nwco0aNwt27dzFnzhyYm5tj7NixSElJwYMHD6pd\nXiqVChMnToSbmxvq1KmDMWPGIDk5GUD5TT9ffPEFwsLC0LZtW5iZmSEsLAzJycm4du0a4uLi0LFj\nRwwbNgxmZmYICQkpU1aOjo54/fXXYWZmhjp16qB169bo378/LC0tYWdnhxkzZuDgwYMVxvuk35VK\npUJISAicnJxQu3btJ/78TFqcABgAlKgY6tWrBwDIzs7WPle8o7J58+YoKChAenq6XmJJS0tD8+bN\ntY9VKhVcXFxw8+bNMq+1s7NDWlpauce5efMm7OzstMdwdnbWfq9+/fpo1KiR9pjLly+Hh4cHGjZs\nCFtbW2RmZpb4+Zo2bar9f926dWFnZ6ftQ6lbty6Amiuv4r+LunXrljhuaVevXsWbb74JW1tb2Nra\nonHjxgCAGzduIC0trcTPDKDM49Id0Ldu3cK4cePg7OwMGxsbBAUFlUiipVX0uypKrOWdgykHJwBW\nKdeuXSvx/6IrxPr16+Phw4fa76nVaty5c0f7uDIdzaVf4+joiKtXr2ofExFSU1Ph5ORU5r39+vVD\namoqTp48WeL51NRUnDhxAv379y9xjCLZ2dnIyMiAo6MjDh8+jMjISGzduhX379/HvXv3YGNjU63O\n1orKqzrKK8vmzZvjq6++wr1797RfOTk56N69O5o1a4br169rX0tEJR6Xd8x33nkH5ubm+OOPP5CZ\nmYno6OgSo450+V0pZbABK4sTAHsiIsKmTZtw/vx5PHz4EO+99x5Gjx4NlUoFd3d3PHr0CHFxcSgo\nKMDixYuRl5enfa+DgwNSUlIeW5na29vjf//7n/bxmDFj8PPPP2Pfvn0oKChAVFQU6tSpgx49epR5\nr7u7O1599VVMmDABJ06cgFqtxp9//omRI0fC398f/fr10742Li4OR44cQX5+PubNm4fu3bvDyckJ\nWVlZsLCwgJ2dHfLz87Fo0SJtc05Nl1dl31+eJk2awMzMrERZvfrqqwgPD8e5c+cAAJmZmdi6dSsA\n4Pnnn8fZs2exY8cOFBYW4rPPPsPff//92HNnZ2ejfv36aNCgAW7cuIHIyMgS36/O74opDycAVu6Q\n0OKPVSoVgoKC8PLLL6NZs2bIz8/HJ598AgCwsbHB559/jilTpsDZ2RlWVlYlbvlHjx4NAGjcuDG6\ndOlS7vnDwsKwePFi2Nra4sMPP4S7uzs2bdqEadOmoUmTJvj555/x448/wsLCotz3r1y5ElOmTEFg\nYCCsra3x3HPPoV+/fti2bVuJn2H8+PFYuHAhGjdujNOnT2PTpk0AgEGDBmHQoEFwd3eHq6sr6tat\nW6ZZ43HlU5XyKs+TjlX0uF69epg7dy569uwJW1tbJCUlYdiwYZg9ezbGjRsHGxsbeHp6Yvfu3QBE\n89jWrVvx9ttvw87ODufPn0eXLl20bfHl/Vzz58/HqVOnYGNjgyFDhmDkyJElXlPd3xVTFhVV5z6X\nmYS+ffsiKCgIkyZNkjsUnU2cOBHOzs54//339X4upZaXRqOBi4sLvv32W/j5+ckdDlMAye8AHj16\nBF9fX3h7e8PDwwNhYWFSh8B0YOjXCVLHr5TySkhIwP3795GXl4fw8HAAQLdu3WSOiimF5PdpderU\nwf79+1GvXj0UFhaiV69e+OWXX9CrVy+pQ2FVYOgdeVLPfFZKeR07dgzjx49Hfn4+OnTogO3bt/Nw\nTKYlaxPQw4cP4efnh40bN8LDw0MEpJA/HMYYMzRVrc5l6QTWaDTw9vaGvb09+vbtq638ixRNHlLy\n1/z582WPgePkOA01Ro6z5r90IUsCMDMzQ3JyMq5fv45Dhw7hwIEDcoTBGGMmTdZhoDY2NnjhhRfw\n66+/yhkGY4yZJMkTQHp6Ou7fvw8AyM3NxZ49e+Dj4yN1GNXWp08fuUOoFI6zZhlCnIYQI8BxKoHk\nncBnz55FcHAwNBoNNBoNgoKCEBoa+m9A1VwbnjHGTJEudafiJoJxAmCMsarTpe7kpSAYY8xEcQJg\njDETpcgVm3r3Bjp2lDsK43D5MjBiBPDaa3JHYhx69ADatwd4Mm31ZWUB6elAfLzckZguRSaAjAxO\nADXl99+BW7fkjsJ4nD8PDB4MNGwodySG79o14MgRuaMwbYpMAC1aAFOnyh2FcUhOBhwd5Y7CeNSt\nC7z8MpdpTfjtN2DPHrmjMG3cB8AYYyaKEwBjjJkoTgCMMWaiJE8Aqamp6Nu3Lzp06ICOHTs+dqs8\nxhhj+iN5J7ClpSU++ugjeHt7Izs7G507d4a/vz/at28vdSiMMWbSJE8ADg4OcHBwAABYWVmhffv2\nuHnzZokEcPnyAixYIP7fp08fo16MiTHGdHHgwIFqL6Uv6zDQlJQUnD59Gr6+viWeb9Pm3wTAGGOs\nrNIXxwsXLqzyMWTrBM7OzsaoUaOwYsUKWFlZyRUGY4yZLFkSQEFBAUaOHInAwEAMGzZMjhAYY8zk\nSZ4AiAiTJ0+Gh4cHpk+fLvXpGWOM/UPyBHDkyBFs2rQJ+/fvh4+PD3x8fLBr1y6pw2CMMZMneSdw\nr169oNFopD4tY4yxUngmMGOMmShOAIwxZqI4ATDGmIniBMAYYyaKEwBjjJkoTgCMMWaiOAEwxpiJ\n4gTAGGMmSvIEMGnSJNjb28PT01PqUzPGGCtG8gQwceJEXvqBMcYUQPKlIJ555hmkpKQ89jW8IQxj\njD2ewW8IUxHeEIYxxh7PoDeEYYwxJi9OAIwxZqI4ATDGmImSPAEEBASgR48euHTpElxcXLB+/Xqp\nQ2CMMQYZOoE3b94s9SkZY4yVg5uAGGPMRHECYIwxE8UJgDHGTBQnAMYYM1GcABhjzERxAmCMMRP1\nxASwbds2tGnTBg0aNIC1tTWsra3RoEEDKWJjjDGmR09MAG+//TZ27tyJBw8eICsrC1lZWXjw4EG1\nTrpr1y60a9cObdq0QURERLWOxRhjTDdPTAAODg5o3759jZ1QrVbjjTfewK5du3Du3Dls3rwZ58+f\nr7HjM8YYq5wnzgTu0qULxo4di2HDhqFWrVoAAJVKhREjRuh0wqSkJLi5ucHV1RUAMG7cOOzYsaNG\nkwxjjLEne2ICyMzMRN26dZGQkFDieV0TwI0bN+Di4qJ97OzsjBMnTpR4DW8IwxhjjyfJhjAbNmyo\n1glKU6lUT3wNbwjDGGOPVxMbwlSYAJYtW4a3334b06ZNK/M9lUqFTz75pMonAwAnJyekpqZqH6em\npsLZ2VmnYzHGGNNdhQngiy++QI8ePdC5c2ftVTsRAajcVXxFunTpgsuXLyMlJQWOjo7YsmULrxDK\nGGMyqDABhISEIDQ0FDdv3sTYsWMREBAAHx+f6p/QwgIrV67Es88+C7VajcmTJ3MHMGOMyaDCBDB9\n+nRMnz4dKSkpiImJwaRJk/Dw4UOMHz8eAQEBcHd31/mkzz33HJ577jmd388YY6z6njgPwNXVFXPm\nzMHp06cRExOD2NhYvmJnjDEj8MQEUFhYiJ07d2L8+PEYNGgQ2rVrhx9++EGK2BhjjOlRhU1ACQkJ\niImJwc8//4yuXbsiICAAX331FaysrKSMjzHGmJ5UmACWLl2KgIAALF++HI0aNZIyJsYYYxKoMAHs\n27dPyjgYY4xJjPcDYIwxE8UJgDHGTBQnAMYYM1GSJoCtW7eiQ4cOMDc3x6lTp6Q8NWOMsVIkTQCe\nnp6IjY1F7969pTwtY4yxcjxxOeia1K5dOylPxxhj7DEkTQCVxRvCMMbY40myIUxV+fv74++//y7z\nfHh4OIYMGVKpY/CGMIwx9nh63RBGV3v27KnpQzLGGNMD2YaBFm0uwxhjTB6SJoDY2Fi4uLjg+PHj\neOGFF3hPAMYYk5GkncDDhw/H8OHDpTwlY4yxCvBMYMYYM1GcABhjzERxAmCMMRPFCYAxxkwUJwDG\nGDNRnAAYY8xEcQJgjDETxQmAMcZMlKQJIDQ0FO3bt4eXlxdGjBiBzMxMKU/PGGOsGEkTwMCBA/Hn\nn3/izJkzcHd3x5IlS6Q8PWOMsWIkTQD+/v4wMxOn9PX1xfXr16U8PWOMsWJk2xBm3bp1CAgIKPd7\nvCEMY4w9nsFuCPPBBx+gVq1aGD9+fLnH4A1hGGPs8QxyQ5gNGzYgLi4OiYmJNX1qxhhjVSBpE9Cu\nXbsQGRmJgwcPok6dOlKemjHGWCmSdgJPmzYN2dnZ8Pf3h4+PD6ZOnSrl6RljjBUj6R3A5cuXpTwd\nY4yxx+CZwIwxZqI4ATDGmImSbR4Ak4ZaDeTnAw8fyh2JcSASX6z6NBrxxZ9N+SgyAdSuLXcExuPk\nSSA6Gnj7bbkjMQ6PHgF37gBOTnJHYvguXQJ+/x2ws5M7EtOlIlLW9YxKpYLCQmKMMcXTpe7kPgDG\nGDNRnAAYY8xEcQLQUXUXYZIKx1mzDCFOQ4gR4DiVQNIEMG/ePHh5ecHb2xv9+/dHamqqlKevUYby\noeA4a5YhxGkIMQIcpxJImgDefvttnDlzBsnJyRg2bJhOq9cxxhirGZImAGtra+3/s7OzYcfjvxhj\nTDaSDwOdO3cuoqOjUa9ePRw/fhwNGzYsGZBKJWU4jDFmNKpandd4AqjMhjAAsHTpUly8eBHr16+v\nydMzxhirJNkmgl27dg3PP/88/vjjDzlOzxhjJk/SPoDiy0Hv2LEDPj4+Up6eMcZYMZLeAYwaNQoX\nL16Eubk5WrdujVWrVqFp06ZSnZ4xxlgxkt4BfP/99zh79iySk5Oxbdu2MpX/rl270K5dO7Rp0wYR\nERFShlYlrq6u6NSpE3x8fNC1a1e5w9GaNGkS7O3t4enpqX0uIyMD/v7+cHd3x8CBA3H//n0ZIxTK\ni3PBggVwdnaGj48PfHx8sGvXLhkjBFJTU9G3b1906NABHTt2xCeffAJAeeVZUZxKK89Hjx7B19cX\n3t7e8PDwQFhYGADllWdFcSqtPIuo1Wr4+Pho+1erXJ6kEIWFhdS6dWu6cuUK5efnk5eXF507d07u\nsMrl6upKd+/elTuMMg4dOkSnTp2ijh07ap8LDQ2liIgIIiJaunQpzZ49W67wtMqLc8GCBRQVFaX3\nc//yyy/k5uZGVlZWtGPHjgpfl5aWRqdPnyYioqysLHJ3d6dz584prjwrilOq8qyKnJwcIiIqKCgg\nX19fOnz4sOLKk6j8OJVYnkREUVFRNH78eBoyZAgRVf3vXTFLQSQlJcHNzQ2urq6wtLTEuHHjsGPH\nDrnDqhApcMXSZ555Bra2tiWe27lzJ4KDgwEAwcHB2L59e5WOuWHDBnh6eqJ+/fpo1qwZpk6diszM\nzEq/39XVFfv27XtinEDlyrS841XFe++9h5CQEGRlZWHo0KEVvs7BwQHe3t4AACsrK7Rv3x43btyo\nUnm6uroiMTGxUnH16dMHa9eurcJP8vg4gap9RhcsWICgoKAqn78q6tWrBwDIz8+HWq2Gra1ttT+f\n+lBenIDy/uavX7+OuLg4TJkyRRtbVctTMQngxo0bcHFx0T52dnbWfpCVRqVSYcCAAejSpQtWr14t\ndziPdevWLdjb2wMA7O3tcevWrUq/NyoqCnPmzEFUVBQePHiA48eP4+rVq/D390dBQUGljlGVJWo/\n/fRTeHl5YfLkyRXeulZ3ufBr167Bw8OjSu9JSUnB6dOn4evrW6XyVKlUlZ7XUhPzX4ri7NatG4B/\ny3PixIl6b1pRq9VPfI1Go4G3tzfs7e21zVbV+XzqS3lxApX7fEppxowZiIyMhJnZv9V4lctTfzcn\nVfP999/TlClTtI+jo6PpjTfekDGiit28eZOIiG7fvk1eXl506NAhmSP615UrV0o0rTRs2LDE921t\nbSt1nMzMTLKysqKtW7eWeD47O5uaNGlC69atIyKi4OBgevfdd7Xf379/Pzk7OxMRUWBgIJmZmVHd\nunXJysqKIiMj6cqVK6RSqWjJkiVkYWFBzZo1o+XLl9OtW7dIo9FQcHAw9erViyZNmlSp45Xnq6++\nIjc3N2rUqBENHTpU+/tq1aqV9v3W1taUn59f5r1Lliyh1q1bk7W1NXl4eNDmzZvpqaeeotjYWFq/\nfj2Zm5vTrFmzyNbWllq2bElWVlYVlqGrqyslJiYSEdH69eupZ8+eJd4bHx9PRETvvPMOmZubU506\ndcjKyoqmTZtGRETnz5+nAQMGUKNGjaht27b03XffaY+dnp5OgwcPpgYNGtDTTz9NoaGhZGVlRbGx\nsUREpFKpaOXKleTm5kYNGzakSZMmUUhICLm4uFCDBg2oc+fOdPjwYSIiio+Pp1q1apGlpSVZWVmR\nt7c3ERHduHGDhgwZQo0aNSI3NzdavXq19vzz58+nkSNHUmBgIDVo0IDWrl1bYTmUdv/+ffL19aV9\n+/bp/PmUQlGc+/fv134+NRoNzZ07V/v5lMuPP/5IU6dOJSLxNzJ48GAiqvrfu2ISwLFjx+jZZ5/V\nPg4PD6elS5fKGFHlLFiwgJYvXy53GFqlE0Dbtm0pLS2NiETiatu2baWOEx8fTxYWFqRWq8t8Lzg4\nmAICAoiI6OWXX6Z58+Zpv1e8wiYqWQkWxadSqejFF18kDw8POnv2LDVp0oT27t2rPd60adO0P8OT\njldaYmIi2dnZ0enTpykvL4+mTZtGvXv3rvT7t27dqi2vb7/9lszNzWnRokVEJCpxABQVFUUajYaW\nLl1KFhYWFR6rdAKwtLSkNWvWkEajoVWrVpGjo6P2tX369ClRiWZnZ5OzszNt2LCB1Go1nT59muzs\n7LT9YmPHjqWAgADKzc2lM2fOUJ06dahVq1ba96tUKho4cCDdu3ePLly4QB07dqRNmzZRRkYGqdVq\nioqKIgcHB8rLyyMi8TkOCgoqEf8zzzxDr7/+OuXl5VFycjI1adKE9u3bR0QiAVhaWmr7UXJzcyss\nh/IsWrSIIiMjdf58SqUozuJK/43JISwsjJydncnV1ZUcHByoXr16FBgYWOXyVEwTUJcuXXD58mWk\npKQgPz8fW7ZseWwbrVwePnyIrKwsAEBOTg4SEhJKjGZRmqFDh2Ljxo0AgI0bN2LYsGGVel96ejrs\n7OxK3F4WcXBwwN27d7WPSYcmmZCQEJiZmaFjx46YOHFiifbvCxcu6Fym33zzDSZPngxvb2/UqlUL\nS5YswbFjx3Dt2rVKvX/UqFFwcHAAESE+Ph6NGjWCl5eX9vsNGzZEQUEBVCoV8vLyUFhYiNu3b1fq\n2C1atMDkyZOhUqnw0ksvIS0trcR7i5fjTz/9hJYtWyI4OBhmZmbw9vbGiBEjsHXrVqjVavzwww9Y\nuHAhateujeXLl6NTp05wdHQscb6wsDA0bNgQcXFx8PT0xIQJE2BrawszMzPMnDkTeXl5uHjxovbc\nxc+fmpqKo0ePIiIiArVq1YKXlxemTJmCr7/+WvuaHj16aP9G69Sp89ifPT09Xdtskpubiz179sDH\nx0fnz6e+VBRn8dUNYmNjZf+bDw8PR2pqKq5cuYKYmBj069cP0dHRVS5PxewJbGFhgZUrV+LZZ5+F\nWq3G5MmT0b59e7nDKuPWrVsYPnw4AKCwsBATJkzAwIEDZY5KCAgIwMGDB5Geng4XFxcsWrQIc+bM\nwZgxY7B27Vq4urriu+++q9Sx7OzskJ6eDo1GUyYJpKWlVWshPyLChAkTcPfuXbi4uMDPzw8HDx5E\np06dcP36dTRp0gTR0dE6HTstLQ1dunTRPq5fvz4aN26MGzduoHnz5k98/9dff42PPvoI//3vf5Gd\nnQ0AeOONNzB//nz069cP7dq1w549e7TlqVKpkJ2dXan5LA4ODtr/F3U0Fn9v8X6Aq1ev4sSJEyU6\nywsLC/HSSy8hPT0dhYWFcHFxwZEjR7Bp0yY4OTnh3r178PHxQXh4OIgI//nPf1CnTh20bNkSX375\nJZYvX45169bh5s2bUKlUePDgAdLT08uN9ebNm2jUqBHq16+vfa558+b49ddftY+dnZ2f+DMXSUtL\nQ3BwMDQaDTQaDYKCgtC/f3/4+Pjo9PnUl4rifOmll5CcnAyVSqUtTyUp+uxU9e9dMQkAAJ577jk8\n99xzcofxWC1btkRycrLcYZRr8+bN5T6/d+/eKh+re/fuqF27NrZt24bRo0drn8/OzsauXbuwZMkS\nAKKCffjwofb7pdeBKq9zU6VS4cCBA2jbti0AYPbs2Xj++eexevVqvPHGG6hdu7a2I6syxyvO0dER\nKSkp2sc5OTm4e/cunCqxi/vVq1fxf//3f9i3bx+6d+8OlUoFHx8fTJs2DZMmTcKGDRuQlJRUojzL\nu0PSRemfq3nz5vDz80NCQkKZ16rValhYWCA1NRW9evWCRqPBu+++i4MHD+Lw4cPa48XHx6NVq1YA\ngMOHDyMyMhL79u3Tdmo2atRIe9Vf+vyOjo7IyMhAdnY2rKysAIgO9OKVflU6rj09PXHq1Kkyzzdq\n1Einz6e+VBRn8TsfpfHz84Ofnx+AqpenYpqAmLLY2Nhg/vz5mDZtGnbv3o2CggKkpKRgzJgxcHFx\n0Q4Z9Pb2RlxcHO7du4e///4bH3/8cYnj2Nvb43//+1+Z4y9evBi5ubn4888/sWHDBowdO7ZaxysS\nEBCA9evX48yZM8jLy8M777yDbt26VerqPycnByqVCnZ2dtBoNFi/fr1ka1WV/rkGDx6MS5cuYdOm\nTSgoKEBBQQFOnjyJCxcuwNzcHCNGjMCCBQuQm5uLCxcuIDo6+rEVclZWFiwsLGBnZ4f8/HwsWrQI\nDx480H7fwcEBKSkp2oTg4uKCHj16ICwsDHl5efj999+xbt06BAYG6q8QmOQ4AbAKhYaGIjw8HLNm\nzYKNjQ26deuGFi1aIDExEZaWlgCAoKAgeHl5wdXVFYMGDcK4ceNKVERhYWFYvHgxbG1t8eGHH2qf\n9/Pzg5ubGwYMGIDQ0FAMGDCgWscr0r9/f7z//vsYOXIkHB0dtW2kleHh4YG33noL3bt3h4ODA/74\n4w/06tVL+/3yhnVWZZjn49775ptv4vvvv0ejRo0wffp0WFlZISEhATExMXByckKzZs0QFhaG/Px8\nAMDKlSuRmZkJBwcHBAcHIyAgALVq1aowrkGDBmHQoEFwd3eHq6sr6tatWyIpFt3lNW7cWNuEtnnz\nZqSkpMDR0REjRozAokWL0K9fvwp/HmZ4ZFsNlJmmlJQUtGrVCoWFhTXWfMJEM9rt27d5eXVWJbL8\nBRrKmj+MKdXFixfx+++/g4iQlJSEdevWaQcnMFZZkncCq9VqvPHGG9i7dy+cnJzw9NNPY+jQoYoc\n8cP0w1CaDlJSUjBkyBCcPXsWALB8+XLk5OTA1tYWX375JSwsLODh4VFh57s+ZWVlISAgADdv3oS9\nvT1mzZrPK56RAAAfDElEQVSlyGHTTNkkTwDF1/wBoF3zhxOAaXB1da3UsgFKVJS4IiIikJKSAktL\nyxIdqVIqmjfDWHVIngDKW/PnxIkT2seGcnXITEd5n8niHa6MKUVVu3Ql7wOoTAXfpAnhwgXSzk5U\n4tf8+fNlj4HjlPbrhx8I5ubz8fbb8sdi6GXJcdbs1/37uo3lkTwBODk5ITU1Vfs4NTW1zIzCpUuB\nIUOAe/ekjo6x8p09C/zf/wFjxwKbNwPbtskdEWOCWg0EBOj2XskTQGXW/Jk0CXjhBWDMGKCwUOoI\nGSspPR148UXg44+BNm2A2Fjg1VcBhU4IZyZmzhwgL0+390qeAIqv+ePh4YGxY8eW2wEcGQmYmwNv\nvSV1hJXTp08fuUOoFI6zevLzgVGjxJX/hAkizs6dgZUrRVJQwPL1ZSi1LEvjOKtv40ZxQbJ1q27v\nV9xEsOIbfty/D/j6AqGhwJQpMgfGTA4R8NprwM2bwPbtQOl5a++9ByQmAvv2AbVryxMjM11HjwLD\nhgEHDgAeHrptlqToBAAAly4BzzwDfP+9+JcxqXz2GbBqFXDsGGBtXfb7Go24O2jYEFi7FuABbEwq\nqani4njNGuD558VzuiQAxc/Fd3cHoqNFf0CxRR4Z06vEROD994GdO8uv/AFxR/D118Bvv4n+Acak\nkJMjmh9nzvy38teV4u8AiqxYIa6yjhyp+A+SsZpw+TLQqxewZQtQmebfq1eBbt2A9euBQYP0Hh4z\nYUSiP6puXWDDhpJ3nUbZBFSECHjlFTEi44cfyrbHMlYTMjNFZT59OvCf/1T+fb/8AowYARw6BLRr\np7/4mGlbtAiIjwf27wdKb8Jm1AkAECMyBgwAevcGFi+WODBm9NRqMf+kVSsxyqeq1q4FIiKAEyeA\nYht5MVYjtm0DZswAkpKAYpvLaRl9AgCAO3eArl2BJUuAceMkDIwZvdBQ4NQpYNcu4J/tDqpsxgzg\njz/EVZqFovbbY4YsORnw9wd27waeeqr81xhlJ3BpTZoAO3YAISFAse1JGauW4uOpda38AeXPX2GG\n59Yt0en7+ecVV/66MrgEAACdOgFffgkMHy7GaDNWHUePiqv/nTuBRo2qdywLCyAmRtxFrF5dM/Ex\n05WXJ/qWXn4ZKLY1d40xuCag4hYvBn78UUyEqFtXv3Ex45SaKjp9V6+u/pC64i5dEiOJvv9e9Fkx\nVlVEYlmcrCzgu++ePPDFJPoAiiMCxo8Xt9zR0TwRh1VNTo6YXDh+PDBrVs0fPyEBCA4WE8n+2f6C\nsUr78EMxz+TIEaB+/Se/3uQSAAA8fCiusEaPBmbP1mNgzKhoNGI8db16ZcdT1ySev8J0ER8vrv6P\nHwdatKjce0wyAQDAjRtiWvSqVWIYH2NPsnChaKcvbzx1TeL5K6yqLlwQF7WxsUDPnpV/n+JHAW3d\nuhUdOnSAubk5Tp06VWPHdXISY2QnTRJD8Bh7nG3bxFV5bKx+K39A3Fl8/jlw965YPI6xx8nIAIYO\nFfNJqlL560rSBODp6YnY2Fj01kOvmK8v8NFHovDS02v88MxIJCeLtfy3by9/Mo0+1Kolks4334jN\nZBgrT2GhaJYcPBiYOFGac0o6VaVdJefIL1iwQPv/Pn36VHo97sBAcQcwerTogKvOeG5mfPQ5nvpJ\nmjYV81f69wfc3ICnn5b2/Ez5Zs4UA1qWLavc6w8cOIADBw5U65yy9AH07dsXUVFReKqcv0Jd2rGK\nU6vFGtnOzqJPgDFAjKfu108sJbJwoXxxxMaKSYwnTgCOjvLFwZRl9WogKkp0+jZsqNsxdKk7a/wO\nwN/fH3///XeZ58PDwzFEgh5ac3Nxq92jh7jSmzpV76dkCkckmn2aNQPmz5c3luHDgT//FP/y/BUG\niAUE330XOHxY98pfVzWeAPbs2VPTh6yyBg3ErM4ePYC2bcVtNzNdH30EnD4thmIqYRTO3LmiqfKV\nV3j+iqm7ckW0+2/aJPY+kZpsfw76bnlq1Up0uI0fD/z3v3o9FVOw+HixPs+OHZWbTCMFlQpYt04M\n94uIkDsaJpesLDFoJSxMLPQmB0n7AGJjYxESEoL09HTY2NjAx8cH8fHxJQOqZh9AaV98AXzyiZiN\naWNTY4dlBkDX8dRS4fkrpkujEWv8NGkCfPVVzdwFmuxEsCd5/XWxneTOnaKPgBm/jAyxxk9YmHRD\n6nRx4oQY9rd/P9Cxo9zRMKnMnSva/PfuFcOEa4LiJ4LJ5eOPgdxcURkw4yfHeGpd8fwV07N5M/Dt\nt2JuSE1V/royiTsAQMzE9PUF5s0TC3Qx4xUSIlbj/Oknw9mUZfZssdMTz18xbidPAi+8IK78O3Wq\n2WNzE9ATnDsnNvnesQPo3l0vp2Ayq4nx1HIomr/i5CT6BHhkkPG5eVPsZrhypfhd1zRuAnoCDw9g\n/Xpg1CixDjwzLkXjqXfuNKzKH/h3/sovv4j5K8y45OaKSv+11/RT+evKpO4AikRGil2bDh8WywEz\nw3flipj38fXX8g2pqwl//SV+jm++4fkrxoJILFOj0Yi2f33d3XETUCURiX6AR4+ALVv4dtvQZWWJ\nSvOVV0T7v6Hbvx8YN05MXHNzkzsaVl1Ll4oO30OH9DvzmxNAFTx6BPTtCzz3HC/Ta8j0MZ5aCVat\nAj79lOevGLqdO8VyNCdOiP4dfeIEUEVpaf8Owxs5UpJTshqmj/HUSsHzVwzb2bNiAcKffxadv/rG\nncBV1KyZmCX66qtinXhmWJQ0nlofiuavzJkjdySsqtLTxdLjH38sTeWvK5NOAADQuTPw2WeiZ/72\nbbmjYZV18iTw5ptiSG+TJnJHox+WlsDWreIiZeNGuaNhlZWfL0YajhkDTJggdzSPZ9JNQMW99x6w\nbx+QmAjUri356VkV6Hs8tdLw/BXDQSSGet68KRK3lE13im8CCg0NRfv27eHl5YURI0YgMzNTytM/\n1oIFYtem114Tv0SmTEodT61PPH/FcHz+uZjL8c03htFvI2kCGDhwIP7880+cOXMG7u7uWLJkiZSn\nfywzMzGG/LffRLsdUx4iYMoUoHVr4J135I5GWi+8AEyfLtqVc3LkjoaVJzEReP990WlvbS13NJUj\naQLw9/eH2T87cvj6+uL69etSnv6JrKzEL2/ZMmD3brmjYaVFRIg1ftatM57hnlUxa5ZYMXTiRL5L\nVZrLl8XeIzExYi8SQyHbUlnr1q1DQEBAud/TdVP4mtCiheh4GzFCDC9s21ayU7PH2LlTtPmfOGG6\n2yiqVGKuQ9++4kqT568oQ2amWM114ULRVyMVSTaF/+uvv9CqVEor77kildkT+IMPPsCpU6ewbdu2\nsgHJ1Alc2rp1YgbfiROAra3c0Zg2qcdTKx3PX1EOtVps5tOqlbhAkZNeJoL5+Pjg9OnTJZ7r3Lkz\nfvvtt6pHCGDDhg1YvXo1EhMTUadOnbIBKSQBAMCMGWLv1vh4w1lW2Nikp4tK//33lT+kTkq//QYM\nGgTs2QN4e8sdjekKDQVOnQJ27ZJ/GW9d6s4Kq7Xz58/j3LlzyMzMxA8//AAigkqlwoMHD/Do0SOd\nAty1axciIyNx8ODBcit/pYmMFJuKvPUWsGKF3NGYHkMaTy214vNXTpwA7O3ljsj0bNwohnomJclf\n+euqwjuAHTt2IDY2Fj/++COGDh2qfd7a2hrjxo1Djx49qnyyNm3aID8/H40aNQIAdO/eHZ+XWvtW\nSXcAAHD/vrjdDg0VI1CYNOQcT21I3ntPjD7Zt4/nr0jp6FGRfA8cEMN0lUAvTUDHjh1Ddwlnnygt\nAQBi5MkzzwDffy/+Zfr32WdiQbRjxwxnSJ0cNBpxl9SwIbB2rWmOjpJaaqq4KFyzBnj+ebmj+Zde\nEsDEUpuqqv75hK1bt66K4VUyIAUmAEBs1RccLCokV1e5ozFuiYmiyefoUcMaUieX7GygZ0/g5ZdF\nvxXTn5wccRE4frwYlqskNdoHUOSFF17QVvq5ubmIjY2Fo6OjbhEasIEDxaJcQ4eKddr5qlQ/isZT\nb9nClX9lFc1f6d5dNEc8+6zcERknjUYkWU9P0S9oDKq8FpBGo0HPnj1x7Ngx/QSk0DsAQLRLv/KK\nGJnyww9i9jCrOZmZQLduYpG3V1+VOxrDc+QIMHy42HikXTu5ozE+CxeK0T779wNKHMMiyVpAly5d\nwp07d6r6NqOgUom1Pu7e5Uk4NU2tBgICxDaIXPnrpmdPMXdl6FDg3j25ozEu27aJPpbYWGVW/rp6\nYhOQlZWVtglIpVLB3t4eEREReg9MqWrVEh8GX18xLX/cOLkjMg5z5gB5eWJyE9PdpEli4tyYMTx/\npaYkJ4uLkt27AQcHuaOpWbwctI5+/x0YMACIiwO6dJE7GsO2caOY6JWUBPwzQphVQ2GhmL/Sti3P\nX6muW7fERMTly4HRo+WO5vH0tiXkjh07cOjQIahUKvj5+WmXdNAHQ0kAgLgdDAkRE3FMsF+8Rihx\nPLUx4Pkr1ZeXJ5YgGTBAtP8rnV4SwJw5c3Dy5ElMmDABRISYmBh06dJFb0s5G1ICAIDFi4EffxQV\nmKkuUqYrpY6nNhY8f0V3RKI5LSsL+O47wxjwoZcE4OnpieTkZJj/MxVTrVbD29sbZ8+e1T3SxwVk\nYAmASHReWlgA0dE8EaeylDye2pjw/BXdfPih2B/kyBGgfn25o6kcvYwCUqlUuH//vvbx/fv3tZ3C\nTFT469YBFy6IfQTYkxnjeGqlKj5/JStL7mgMQ3y8WAdsxw7Dqfx1VeEYgalTp2L8+PF455138NRT\nT6Fv374gIhw8eBBLly6VMkbFq1dPfFh8fUU7th67SIzC++8D16+L8dR8LaF/ISFiZFBQEM9feZIL\nF8QdU2ys2BvE2FXYBPTxxx9jy5YtuHnzJgYMGIAWLVrA29sbXbt2hYOOY6HmzZuHnTt3QqVSoXHj\nxtiwYQNcXFxKBmRgTUDFnTghRl/s3y+GiLKytm0TyxUkJRnfkDoly88XnZm9e4t+K1ZWRoa4iHvn\nHbHrmqHRSx9ASkoKYmJiEBMTg9zcXIwfPx4BAQFwd3evcoBZWVmw/mcNhU8//RRnzpzBmjVrSgZk\nwAkAADZtEpPEkpIAOzu5o1GW5GTA31+Mp37qKbmjMT137oghjUuW8PyV0goLgeeeE82SH34odzS6\n0dsw0CKnT5/GxIkTcfbsWajV6ioHWNySJUuQmZlZpjnJ0BMAAMyeLRJAQoLhrhNe0wxpPLUx4/kr\n5QsJEaOmfvrJcCfP6WUxuMLCQsTFxSEmJgaJiYno27cvFlZjUOzcuXMRHR2NevXq4fjx4+W+Rs49\ngWtCeLgY2x4SIpY0NnV5eWKP5Zdf5spfbp06AV9+KdYM4vkrwurV4mLt+HHDqvz1uidwQkICYmJi\n8PPPP6Nr164ICAjA0KFDYWVl9dgDVmZPYABYunQpLl68iPXr15cMyAjuAADgwQOgRw9g6lTxZaoM\ncTy1KeD5K8LBg2LZjMOHAR1atRWlRpuA+vXrh4CAAIwcOVK7g1dNunbtGp5//nn88ccfJQMykgQA\nAH/9JZLAN9+IRc5MkSGOpzYFRGIOhrm56c5fuXJFLKEdHS36pgyd3vsAquvy5cto06YNANEJnJSU\nhOjo6JIBGVECAMSIoHHjRAXo5iZ3NNKKjxdX/8ePm8aQOkPz8KEYFTR6tOi3MiVZWeLi7JVXRFOt\nMVB8Ahg1ahQuXrwIc3NztG7dGqtWrULTpk1LBmRkCQAQ/QCffipmY9rYyB2NNC5cEJVLbKxYppgp\n040bYujjqlWmM39FoxF9Uk2aAF99ZTx3P4pPAJVhjAkAAF5/HUhJETs3GfsG5xkZYmOXOXPEHQBT\nNlObvzJ3rmjz37tXLO9uLCTZEIbp5uOPgdxcICxM7kj0q7AQGDtWVChc+RsGX1+xD8PQoWK3O2P2\n7bfia9s246r8dcV3ABK6e1f8sc2bJ6abGyNjGE9tqubMEXcDxjp/5eRJsepsYqIYDmtsuAnIAJw7\nB/TpI9YO6t5d7mhq1urVQFSU6PRt2FDuaFhVqdVi/oqzs/HNX7l5U0xEXLlS/IzGiJuADICHB7B+\nPTBqlFgP31gcOgS8+67o4+DK3zCZm4shy4cPi72vjUVurqj0X3vNeCt/XfEdgEwiI4GYGPHHVq+e\n3NFUz5UrYkjd118bx3hqU2dM81eIgMBAMfLn22+NZ8RPebgJyIAQiX6AR4+ALVsM94NpjOOpmfHM\nX1m6VHT4Hjpk/DOeOQEYmEePgL59xSqE770ndzRVZ6zjqZnwxRfAJ58Y7vyVnTvFMiwnTgBOTnJH\no3+cAAxQWtq/w/BGjpQ7mqox1vHU7F+GOn/l7FmxofvPP4vOX1PAncAGqFkzMVv21VfFevmGYvNm\nHk9tCgxx/kp6OvDiiyJ2U6n8dcUJQAE6dwY++0yMULh9W+5onuzkSeDNN8VQ1iZN5I6G6ZOlJbB1\nq9hKcuNGuaN5svx8McJuzBhgwgS5o1E+bgJSkPfeA/btExNVateWO5rymcJ4alaWIcxfIRJ30mlp\n4q7akJqsagL3ARg4jUZcvTRsCKxdq7xO1dxcwM9P3F7PnSt3NExqcXFitNfx40CprbwVYeVK0XF9\n7Bjwz86zJsVg+gCioqJgZmaGjIwMOU6vWGZmYiz9b7+J9kslIQKmTAFatxabZjPT8/zzwPTp4s7v\n4UO5oykpMVFscrNzp2lW/rqSPAGkpqZiz549aMELxJfLykp8iJctE5unK0VEBHDxojLvTJh0Zs0C\nOnQAJk4UFwVKcPmy2NwmJgZo1UruaAyL5Mt1zZw5E8uWLcOLL75Y4WsMfU/g6mrRQnS8jRghhlm2\nbStvPDt3itvrEycMf9Yyqx6VSsz56NtXXHHPmydvPJmZYhXThQtFH4Up0euewPqwY8cOHDhwAB99\n9BFatmyJ3377rcx2k6bcB1DaunViJuOJE4CtrTwxmOJ4avZkf/8tPg9yzl9Rq8UmNq1aiQsUU6dL\n3VnjdwAVbQr/wQcfYMmSJUhISNA+xxX9402aJCrgMWPE9opSL6/M46lZRRwcgO3bgWefFf1C3t7S\nxzB7NpCXJ5IQ041kdwB//PEH+vfvj3r/tCFcv34dTk5OSEpKKrEtJN8BlFRYKDZXadsWWLFCuvPm\n5wMDB4qdvZYule68zLB89x3w9ttAUhJQandXvdq4EXj/fXHeUo0IJsughoFyE1Dl3b8vlosIDRUj\ncfSNSCyde+OGuMoztfHUrGqknr9y9KgYiXTggFhenQkGMwwUEMGyymnYEPjxx3/X3tG3zz8HfvlF\nLAfMlT97kgULxNX/a6/pf2RQaqqYK7NhA1f+NYEnghmQhASxhPSxY4Crq37OkZgoptAfPcpD6ljl\nZWcDvXqJz+eMGfo5R04O8MwzYsjnrFn6OYchM6gmoIpwAni8FSvEWPwjR2p+wsvly+KPeMsW0xtS\nx6rv6lWxTMT69aJzuCZpNMDYsWIY8oYNPBelPJwATACRmI6fni4W6DKroUa8zEzR4fvmm2I9FcZ0\nceQIMHx4zc9fWbgQ2LVLbFRTp07NHdeYcAIwEfn5Yqs+Pz8xGae6isZTt2wpViVlrDpqev7Ktm2i\nWSkpSQw/ZeXjBGBCbt8WI4OWLBFb91VHaChw6pS4wrK0rJn4mGmbMQP480+xgFx15q8kJ4t9pnfv\nBp56qubiM0YGNQqIVU/TpmJp3pAQ4NdfdT/Oxo1i6dytW7nyZzUnMlI0T771lu7HuHVLTET8/HOu\n/PWFE4AB69QJ+PJL0eZ682bV33/0qLj637mTJ9OwmmVhIRZn270bWLOm6u/PyxOf65dfBkaPrvHw\n2D+4CcgILF4s5gkcOADUrVu596SmiiakNWvEMr+M6cOlS2Lo5vffi38rg0gsg5KVJWYa19RAB2PH\nfQAmiggICBBXXdHRTx4iVzSeOiBA3AEwpk9Vnb/y4YdiX4wjR4D69fUentHgBGDCHj4EevcWt8uz\nZ1f8Oh5PzeRQNH/l6FGx50VF4uPF1f/x42JZdFZ5nABM3I0bolln1SoxrLM8PJ6ayYEI+L//A+7c\nqXj+yoUL4iImNhbo2VP6GA0djwKSUHU3YtAHJycxZnrSJOCPP8RzxePctk1chcXGKq/yV2J5lscQ\n4lRijCqVmGOSkSEWjwNKxpmRIS5aIiKUV/krsTxriqQJYMGCBXB2doaPjw98fHywa9cuKU9fo5T6\nofD1FeujDx0qZgsXxZmcLGb4bt+uzMk0Si3P0gwhTqXGWKuWuAj55hsxQqgozsJC0Sw5ZIjYalJp\nlFqeNUHSLUZUKhVmzpyJmTNnSnlakxMYKDaSGT1adPYWjaf+7DMeT83k1aSJmL8yYIBY0hkAZs4U\nq84uWyZvbKZI8j2BuX1fGuHh4g/s55/FCp/BwWJnMcbk1qmT2Fc4OBho00aMEjp+XPod75jEncAL\nFy7E+vXrYWNjgy5duiAqKgoNGzYsGRAPS2GMMZ3IPgrocXsCd+vWDU2aNAEAzJs3D2lpaVi7dm1N\nnp4xxlglyTYMNCUlBUOGDMHZs2flOD1jjJk8SUcBpaWlaf8fGxsLT09PKU/PGGOsGEnvAF566SUk\nJydDpVKhZcuW+PLLL2Fvby/V6RljjBUj6R3A119/jd9//x1nzpzB9u3by1T+u3btQrt27dCmTRtE\nRERIGVqVuLq6olOnTvDx8UHXrl3lDkdr0qRJsLe3L3FnlZGRAX9/f7i7u2PgwIG4f/++jBEK5cWp\ntDkiqamp6Nu3Lzp06ICOHTvik08+AaC88qwoTqWV56NHj+Dr6wtvb294eHggLCwMgPLKs6I4lVae\nRdRqNXx8fDDkn6n/VS5PUojCwkJq3bo1XblyhfLz88nLy4vOnTsnd1jlcnV1pbt378odRhmHDh2i\nU6dOUceOHbXPhYaGUkREBBERLV26lGbPni1XeFrlxblgwQKKioqSMaqS0tLS6PTp00RElJWVRe7u\n7nTu3DnFlWdFcSqtPImIcnJyiIiooKCAfH196fDhw4orT6Ly41RieRIRRUVF0fjx42nIkCFEVPW/\nd8UsBZGUlAQ3Nze4urrC0tIS48aNw44dO+QOq0KkwPkMzzzzDGxL7cG3c+dOBAcHAwCCg4Oxfft2\nOUIrobw4AWWVqYODA7y9vQEAVlZWaN++PW7cuKG48qwoTkBZ5QkA9erVAwDk5+dDrVbD1tZWceUJ\nlB8noLzyvH79OuLi4jBlyhRtbFUtT8UkgBs3bsDFxUX72NnZWftBVhqVSoUBAwagS5cuWL16tdzh\nPNatW7e0TW329va4deuWzBFV7NNPP4WXlxcmT54se1NAcSkpKTh9+jR8fX0VXZ5FcXbr1g2A8spT\no9HA29sb9vb22mYrJZZneXECyivPGTNmIDIyEmbFVtarankqJgEY0gSwI0eO4PTp04iPj8dnn32G\nw4cPyx1SpahUKsWW82uvvYYrV64gOTkZzZo1w1vV2UuwBmVnZ2PkyJFYsWIFrK2tS3xPSeWZnZ2N\nUaNGYcWKFbCyslJkeZqZmSE5ORnXr1/HoUOHsH///hLfV0p5lo7zwIEDiivPn376CU2bNoWPj0+F\ndyaVKU/FJAAnJyekpqZqH6empsLZ2VnGiCrWrFkzAECTJk0wfPhwJCUlyRxRxezt7bUT89LS0tC0\naVOZIypf06ZNtR/YKVOmKKJMCwoKMHLkSAQFBWHYPwvXKLE8i+IMDAzUxqnE8ixiY2ODF154Ab/9\n9psiy7NIUZy//vqr4srz6NGj2LlzJ1q2bImAgADs27cPQUFBVS5PxSSALl264PLly0hJSUF+fj62\nbNmCoUOHyh1WGQ8fPkRWVhYAICcnBwkJCYqezzB06FBs3LgRALBx40ZtBaE0SpsjQkSYPHkyPDw8\nMH36dO3zSivPiuJUWnmmp6drm01yc3OxZ88e+Pj4KK48K4qz+OoGSijP8PBwpKam4sqVK4iJiUG/\nfv0QHR1d9fLUW/e0DuLi4sjd3Z1at25N4eHhcodTrr/++ou8vLzIy8uLOnTooKg4x40bR82aNSNL\nS0tydnamdevW0d27d6l///7Upk0b8vf3p3v37skdZpk4165dS0FBQeTp6UmdOnWiF198kf7++29Z\nYzx8+DCpVCry8vIib29v8vb2pvj4eMWVZ3lxxsXFKa48f//9d/Lx8SEvLy/y9PSkZcuWEREprjwr\nilNp5VncgQMHtKOAqlqeitsRjDHGmDQU0wTEGGNMWpwAGGPMRHECYIwxE8UJgDHGTBRvwsZYBUrv\nWbF8+XLk5OTA1tYWX375JSwsLODh4YHNmzfLHCljuuEEwFglFc2qjIiIQEpKCiwtLfHgwQOZo2JM\nd9wExFgVderUCePHj8c333wDc3NzucNhTGecABirgIWFBTQajfZxbm4uACAuLg6vv/46Tp06haef\nfhpqtVquEBmrFk4AjFXA3t4et2/fRkZGBvLy8vDTTz9Bo9Hg2rVr6NOnD5YuXYrMzEzk5OTIHSpj\nOuE+AMYqYGlpiffeew9du3aFk5MTPDw8oFarERgYiMzMTBAR3nzzTTRo0EDuUBnTCS8FwRhjJoqb\ngBhjzERxAmCMMRPFCYAxxkwUJwDGGDNRnAAYY8xEcQJgjDET9f/0qkid2sgWzAAAAABJRU5ErkJg\ngg==\n"
}
],
"prompt_number": 185
},
{
"cell_type": "markdown",
"source": [
"