{ "metadata": { "name": "Chapter_12" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "<h1>Chapter 12: The Operational Amplifier<h1>" ] }, { "cell_type": "markdown", "source": [ "<h3>Example 12.1, Page Number: 392<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "A_ol=100000.0; #open loop voltage gain", "A_cm=0.2; #common mode gain", "CMRR=A_ol/A_cm;", "CMRR_dB=20*math.log10(CMRR);", "print('CMRR = %d'%CMRR)", "print('CMRR in decibels = %f'%CMRR_dB)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "CMRR = 500000", "CMRR in decibels = 113.979400" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.2, Page Number: 395<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "del_t=1.0; # in microseconds", "#lower limit is -9V and upper limit is 9V from the graph", "del_V_out=9.0-(-9.0);", "slew_rate=del_V_out/del_t;", "print('slew rate =%d V/microseconds'%slew_rate)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "slew rate =18 V/microseconds" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.3, Page Number: 400<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "R_f=100*10**3;", "R_i=4.7*10**3;", "A_cl_NI=1+(R_f/R_i);", "print('closed loop voltage gain = %f'%A_cl_NI)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "closed loop voltage gain = 22.276596" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.4,Page Number: 402<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "R_i=2.2*10**3;", "A_cl=-100.0; #closed loop voltage gain", "R_f=abs(A_cl)*R_i;", "print('value of R_f = %d ohms'%R_f)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of R_f = 220000 ohms" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.5, Page Number: 404<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "Z_in=2*10**6;", "Z_out=75.0;", "A_ol=200000.0;", "R_f=220.0*10**3;", "R_i=10.0*10**3;", "B=R_i/(R_i+R_f); #B is attenuation", "Z_in_NI=(1+A_ol*B)*Z_in;", "Z_out_NI=Z_out/(1+A_ol*B);", "A_cl_NI=1+(R_f/R_i);", "Z_in_NI=Z_in_NI/10**10", "print('input impedance = %f * 10^10 ohms'%Z_in_NI)", "print('output impedance = %f ohms'%Z_out_NI)", "print('closed loop voltage gain = %d'%A_cl_NI)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "input impedance = 1.739330 * 10^10 ohms", "output impedance = 0.008624 ohms", "closed loop voltage gain = 23" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.6, Page Number: 405<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "B=1.0; #voltage follower configuration", "A_ol=200000.0;", "Z_in=2*10**6;", "Z_out=75.0;", "Z_in_VF=(1+A_ol)*Z_in;", "Z_out_VF=Z_out/(1+A_ol);", "Z_in_VF=Z_in_VF*10**-11", "print('input impedance = %d * 10^11 Ohms'%Z_in_VF)", "print('output impedance = %f Ohms'%Z_out_VF)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "input impedance = 4 * 10^11 Ohms", "output impedance = 0.000375 Ohms" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.7, Page Number: 406<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "R_i=1.0*10**3;", "R_f=100.0*10**3;", "Z_in=4.0*10**6;", "Z_out=50.0;", "A_ol=50000.0;", "B=R_i/(R_i+R_f); #attenuation", "Z_in_I=R_i; #almost equal to R_i", "Z_out_I=Z_out/(1+(A_ol*B));", "A_cl_I=-R_f/R_i;", "print('input impedance = %d Ohms'%Z_in_I)", "print('output impedance = %f Ohms'%Z_out_I)", "print('closed loop voltage gain =%d'%A_cl_I)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "input impedance = 1000 Ohms", "output impedance = 0.100796 Ohms", "closed loop voltage gain =-100" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.8, Page Number: 412<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "f_c_ol=100.0;", "A_ol_mid=100000.0;", "f=0.0;", "A_ol=A_ol_mid/(math.sqrt(1+(f/f_c_ol)**2))", "print('open loop gain when f=0Hz is %f'%A_ol);", "f=10.0;", "A_ol=A_ol_mid/(math.sqrt(1+(f/f_c_ol)**2))", "print('open loop gain when f=10Hz is %f'%A_ol)", "f=100.0;", "A_ol=A_ol_mid/(math.sqrt(1+(f/f_c_ol)**2))", "print('open loop gain when f=100Hz is %f'%A_ol)", "f=1000.0;", "A_ol=A_ol_mid/(math.sqrt(1+(f/f_c_ol)**2))", "print('open loop gain when f=1000Hz is %f'%A_ol)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "open loop gain when f=0Hz is 100000.000000", "open loop gain when f=10Hz is 99503.719021", "open loop gain when f=100Hz is 70710.678119", "open loop gain when f=1000Hz is 9950.371902" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.9,Page Number: 413<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "f_c=100.0;", "f=1.0;", "theta_rad=-math.atan((f/f_c))", "theta=theta_rad*180/math.pi;", "print('phase lag when f=1Hz = %f degrees'%theta)", "", "f=10.0;", "theta_rad=-math.atan((f/f_c))", "theta=theta_rad*180/math.pi;", "print('phase lag when f=10Hz = %f degrees'%theta)", "f=100.0;", "theta_rad=-math.atan((f/f_c))", "theta=theta_rad*180/math.pi; ", "print('phase lag when f=100Hz = %f degrees'%theta)", "f=1000.0;", "theta_rad=-math.atan((f/f_c))", "theta=theta_rad*180/math.pi;", "print('phase lag when f=1000Hz = %f degrees'%theta)", "f=10000.0;", "theta_rad=-math.atan((f/f_c))", "theta=theta_rad*180/math.pi;", "print('phase lag when f=10000Hz = %f degrees'%theta)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "phase lag when f=1Hz = -0.572939 degrees", "phase lag when f=10Hz = -5.710593 degrees", "phase lag when f=100Hz = -45.000000 degrees", "phase lag when f=1000Hz = -84.289407 degrees", "phase lag when f=10000Hz = -89.427061 degrees" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.10, Page Number: 415<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "A_v1=40.0; #all gains are in decibels", "A_v2=32.0;", "A_v3=20.0;", "f_c1=2*10**3;", "f_c2=40*10**3;", "f_c3=150*10**3;", "f=f_c1;", "A_ol_mid=A_v1+A_v2+A_v3;", "#theta 1", "theta_rad1=-math.atan((f/f_c1))", "theta1=theta_rad1*180/math.pi;", "", "#theta 2", "theta_rad2=-math.atan((f/f_c2))", "theta2=theta_rad2*180/math.pi;", "", "#theta 3", "theta_rad3=-math.atan((f/f_c3))", "theta3=theta_rad3*180/math.pi;", "", "theta_tot=theta1+theta2+theta3;", "print('open loop midrange gain in decibels is %d'%A_ol_mid)", "print('total phase lag in degrees is %d'%theta_tot)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "open loop midrange gain in decibels is 92", "total phase lag in degrees is -45" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.11, Page Number: 416<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "A_ol_mid=150000.0; #open loop midrange gain", "B=0.002; #feedback attenuation", "BW_ol=200; #open loop bandwidth", "BW_cl=BW_ol*(1+B*A_ol_mid);", "print('closed loop bandwidth = %d Hz'%BW_cl)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "closed loop bandwidth = 60200 Hz" ] } ], "prompt_number": 11 }, { "cell_type": "markdown", "source": [ "<h3>Example 12.12, Page Number: 417<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "BW=3*10**6; #unity gain bandwidth", "A_ol=100.0; #open loop gain", "print(\"non-inverting amplifier\")", "R_f=220.0*10**3;", "R_i=3.3*10**3;", "A_cl=1+(R_f/R_i); #closed loop gain", "BW_cl=BW/A_cl;", "print('closed loop bandwidth = %f Hz'%BW_cl)", "print(\"inverting amplifier\")", "R_f=47.0*10**3;", "R_i=1.0*10**3;", "A_cl=-R_f/R_i;", "BW_cl=BW/(abs(A_cl));", "print('closed loop bandwidth = %f Hz'%BW_cl)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "non-inverting amplifier", "closed loop bandwidth = 44334.975369 Hz", "inverting amplifier", "closed loop bandwidth = 63829.787234 Hz" ] } ], "prompt_number": 12 } ] } ] }