{
 "metadata": {
  "name": "Chapter_1"
 }, 
 "nbformat": 2, 
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown", 
     "source": [
      "<h1>Chapter 1: Semiconductor Basics<h1>"
     ]
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 1.1(a), Page Number:29<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "# variable declaration", 
      "V_bias=10.0;      #bias voltage in volt", 
      "R_limit=1000;   #limiting resistance in ohm", 
      "r_d =10.0;        #r_d value", 
      "", 
      "#calculation", 
      "#IDEAL MODEL", 
      "print \"IDEAL MODEL\"", 
      "V_f=0;          #voltage in volt", 
      "I_f=V_bias/R_limit;  #foward current", 
      "V_R_limit=I_f*R_limit;  #limiting voltage", 
      "print \"forward voltage = %.2f volts\" %V_f", 
      "print \"forward current = %.2f amperes\" %I_f", 
      "print \"voltage across limiting resistor = %.2f volts\" %V_R_limit", 
      "", 
      "#PRACTICAL MODEL", 
      "print \"\\nPRACTICAL MODEL\"", 
      "V_f=0.7;      #voltage in volt", 
      "I_f=(V_bias-V_f)/R_limit;   #foward current", 
      "V_R_limit=I_f*R_limit;      #limiting voltage", 
      "print \"forward voltage = %.2f volts\" %V_f", 
      "print \"forward current = %.3f amperes\" %I_f", 
      "print \"voltage across limiting resistor = %.2f volts\" %V_R_limit", 
      "", 
      "#COMPLETE MODEL", 
      "print \"\\nCOMPLETE MODEL\"", 
      "I_f=(V_bias-0.7)/(R_limit+r_d);  #foward current", 
      "V_f=0.7+I_f*r_d;                 #forward voltage", 
      "V_R_limit=I_f*R_limit;            #limiting voltage", 
      "print \"forward voltage = %.3f volts\" %V_f", 
      "print \"forward current = %.3f amperes\" %I_f", 
      "print \"voltage across limiting resistor = %.2f volts\" %V_R_limit"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "IDEAL MODEL", 
        "forward voltage = 0.00 volts", 
        "forward current = 0.01 amperes", 
        "voltage across limiting resistor = 10.00 volts", 
        "", 
        "PRACTICAL MODEL", 
        "forward voltage = 0.70 volts", 
        "forward current = 0.009 amperes", 
        "voltage across limiting resistor = 9.30 volts", 
        "", 
        "COMPLETE MODEL", 
        "forward voltage = 0.792 volts", 
        "forward current = 0.009 amperes", 
        "voltage across limiting resistor = 9.21 volts"
       ]
      }
     ], 
     "prompt_number": 1
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 1.1(b), Page Number:29<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "# variable declaration", 
      "V_bias=5;     #bias voltage in volt", 
      "I_R=1*10**-6; #current", 
      "R_limit=1000   #in Ohm", 
      "", 
      "#calculation", 
      "#IDEAL MODEL", 
      "print \"IDEAL MODEL\"", 
      "I_r=0.0;   #current in ampere", 
      "V_R=V_bias;   #voltages are equal", 
      "V_R_limit=I_r*R_limit;   #limiting voltage", 
      "print \"Reverse voltage across diode = %.2f volts\" %V_R", 
      "print \"Reverse current through diode= %.2f amperes\" %I_r", 
      "print \"voltage across limiting resistor = %.2f volts\" %V_R_limit", 
      "", 
      "#PRACTICAL MODEL", 
      "print \"\\nPRACTICAL MODEL\"", 
      "I_r=0.0;         #current in ampere", 
      "V_R=V_bias;    #voltages are equal", 
      "V_R_limit=I_r*R_limit;   #limiting voltage", 
      "print \"Reverse voltage across diode= %.2f volts\" %V_R", 
      "print \"Reverse current through diode = %.2f amperes\" %I_r", 
      "print \"voltage across limiting resistor = %.2f volts\" %V_R_limit", 
      "", 
      "#COMPLETE MODEL", 
      "print \"\\nCOMPLETE MODEL\"", 
      "I_r=I_R;       #current in ampere", 
      "V_R_limit=I_r*R_limit;    #limiting voltage", 
      "V_R=V_bias-V_R_limit;     #voltage in volt", 
      "print \"Reverse voltage across diode = %.3f volts\" %V_R", 
      "print \"Reverse current through diode = %d micro Amp\" %(I_r*10**6)", 
      "print \"voltage across limiting resistor = %d mV\" %(V_R_limit*1000)"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "IDEAL MODEL", 
        "Reverse voltage across diode = 5.00 volts", 
        "Reverse current through diode= 0.00 amperes", 
        "voltage across limiting resistor = 0.00 volts", 
        "", 
        "PRACTICAL MODEL", 
        "Reverse voltage across diode= 5.00 volts", 
        "Reverse current through diode = 0.00 amperes", 
        "voltage across limiting resistor = 0.00 volts", 
        "", 
        "COMPLETE MODEL", 
        "Reverse voltage across diode = 4.999 volts", 
        "Reverse current through diode = 1 micro Amp", 
        "voltage across limiting resistor = 1 mV"
       ]
      }
     ], 
     "prompt_number": 2
    }
   ]
  }
 ]
}