{ "metadata": { "name": "Chapter_1" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "<h1>Chapter 1: Semiconductor Basics<h1>" ] }, { "cell_type": "markdown", "source": [ "<h3>Example 1.1(a), Page Number:29<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "V_bias=10.0; #bias voltage in volt", "R_limit=1000; #limiting resistance in ohm", "r_d =10.0; #r_d value", "", "#calculation", "#IDEAL MODEL", "print \"IDEAL MODEL\"", "V_f=0; #voltage in volt", "I_f=V_bias/R_limit; #foward current", "V_R_limit=I_f*R_limit; #limiting voltage", "print \"forward voltage = %.2f volts\" %V_f", "print \"forward current = %.2f amperes\" %I_f", "print \"voltage across limiting resistor = %.2f volts\" %V_R_limit", "", "#PRACTICAL MODEL", "print \"\\nPRACTICAL MODEL\"", "V_f=0.7; #voltage in volt", "I_f=(V_bias-V_f)/R_limit; #foward current", "V_R_limit=I_f*R_limit; #limiting voltage", "print \"forward voltage = %.2f volts\" %V_f", "print \"forward current = %.3f amperes\" %I_f", "print \"voltage across limiting resistor = %.2f volts\" %V_R_limit", "", "#COMPLETE MODEL", "print \"\\nCOMPLETE MODEL\"", "I_f=(V_bias-0.7)/(R_limit+r_d); #foward current", "V_f=0.7+I_f*r_d; #forward voltage", "V_R_limit=I_f*R_limit; #limiting voltage", "print \"forward voltage = %.3f volts\" %V_f", "print \"forward current = %.3f amperes\" %I_f", "print \"voltage across limiting resistor = %.2f volts\" %V_R_limit" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "IDEAL MODEL", "forward voltage = 0.00 volts", "forward current = 0.01 amperes", "voltage across limiting resistor = 10.00 volts", "", "PRACTICAL MODEL", "forward voltage = 0.70 volts", "forward current = 0.009 amperes", "voltage across limiting resistor = 9.30 volts", "", "COMPLETE MODEL", "forward voltage = 0.792 volts", "forward current = 0.009 amperes", "voltage across limiting resistor = 9.21 volts" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "source": [ "<h3>Example 1.1(b), Page Number:29<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# variable declaration", "V_bias=5; #bias voltage in volt", "I_R=1*10**-6; #current", "R_limit=1000 #in Ohm", "", "#calculation", "#IDEAL MODEL", "print \"IDEAL MODEL\"", "I_r=0.0; #current in ampere", "V_R=V_bias; #voltages are equal", "V_R_limit=I_r*R_limit; #limiting voltage", "print \"Reverse voltage across diode = %.2f volts\" %V_R", "print \"Reverse current through diode= %.2f amperes\" %I_r", "print \"voltage across limiting resistor = %.2f volts\" %V_R_limit", "", "#PRACTICAL MODEL", "print \"\\nPRACTICAL MODEL\"", "I_r=0.0; #current in ampere", "V_R=V_bias; #voltages are equal", "V_R_limit=I_r*R_limit; #limiting voltage", "print \"Reverse voltage across diode= %.2f volts\" %V_R", "print \"Reverse current through diode = %.2f amperes\" %I_r", "print \"voltage across limiting resistor = %.2f volts\" %V_R_limit", "", "#COMPLETE MODEL", "print \"\\nCOMPLETE MODEL\"", "I_r=I_R; #current in ampere", "V_R_limit=I_r*R_limit; #limiting voltage", "V_R=V_bias-V_R_limit; #voltage in volt", "print \"Reverse voltage across diode = %.3f volts\" %V_R", "print \"Reverse current through diode = %d micro Amp\" %(I_r*10**6)", "print \"voltage across limiting resistor = %d mV\" %(V_R_limit*1000)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "IDEAL MODEL", "Reverse voltage across diode = 5.00 volts", "Reverse current through diode= 0.00 amperes", "voltage across limiting resistor = 0.00 volts", "", "PRACTICAL MODEL", "Reverse voltage across diode= 5.00 volts", "Reverse current through diode = 0.00 amperes", "voltage across limiting resistor = 0.00 volts", "", "COMPLETE MODEL", "Reverse voltage across diode = 4.999 volts", "Reverse current through diode = 1 micro Amp", "voltage across limiting resistor = 1 mV" ] } ], "prompt_number": 2 } ] } ] }