{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter15 Radio Wave Propogation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.2.1,Pg.no.538" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The free−space transmission loss is 195.67\n", "The received power 5.42e-12 watts\n" ] } ], "source": [ "import math\n", "ht=36000 #height of satellite in km\n", "f=4000 #freq used in MHz\n", "Gt=15.0 #transmitting antenna gain\n", "Gr=45.0 #receiving antenna gain\n", "#A) Determination of free−space transmission loss\n", "L=32.5+20*math.log10(ht)+20*math.log10(f)\n", "L=round(L,2)\n", "print 'The free−space transmission loss is',L\n", "#B) Determination of received power Pr\n", "Pt=200.0 #transmitted power in watt\n", "Pr_Pt=Gt+Gr-L #power ration in dB\n", "Pr_Pt_watt=10**(Pr_Pt/10) #power ratio in watts\n", "#Therefore \n", "Pr=Pt*Pr_Pt_watt*10**12\n", "Pr=round(Pr,2)*10**-12\n", "print 'The received power',Pr,'watts'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.2.2,Pg.no.539" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The open−ckt voltage induced is 282.42 uV\n" ] } ], "source": [ "import math\n", "from math import pi,sqrt\n", "Pr=10.0 #radiated power in watt\n", "f=150.0 #freq used in MHz\n", "d2=50.0 #distance of dipole in km\n", "#Therefore open−ckt voltage induced is given as\n", "Vs=sqrt(30*Pr*1.64)/(d2*10**3)*2/pi\n", "Vs=Vs*10**6\n", "Vs=round(Vs,2)\n", "print 'The open−ckt voltage induced is',Vs,'uV'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.3.1,Pg.no.545" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Field strength at a receiving antenna is 11.02 uV/m\n" ] } ], "source": [ "import math\n", "from math import pi\n", "Pt=100 #transmitted power\n", "f=150 #freq used in MHz\n", "d1=20 #height of transmitting antenna in m\n", "Gt=1.64 #transmitting antenna gain\n", "ht=2 #height of receiving antenna in m\n", "d2=40 #distance in km\n", "c=3*10**8\n", "wl=c/(f*10**6)\n", "E0=sqrt(30*Pt*Gt) #Field strength at a receiving antenna is\n", "ER=(E0*4*pi*d1*ht)/(wl*(d2*10**3)**2)\n", "ER=ER*10**6\n", "ER=round(ER,2)\n", "print 'Field strength at a receiving antenna is',ER,'uV/m'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.3.2,Pg.no.548" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The maximum range is 25.1 miles\n" ] } ], "source": [ "import math\n", "from math import sqrt\n", "ht1=100\n", "ht2=60 #antenna heights in ft\n", "dmax_miles=sqrt(2*ht1)+sqrt(2*ht2)\n", "dmax_miles=round(dmax_miles,2)\n", "print 'The maximum range is',dmax_miles,'miles' " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.4.1,Pg.no.560" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "d= 178.8 km\n", "d= 10382.4 km\n" ] } ], "source": [ "import math\n", "from math import pi\n", "ht=200 #virtual height in km\n", "a=6370 #in km\n", "B_degree=20\n", "B_rad=20*pi/180 #angle of elevation in degree\n", "#The flat−earth approximation gives\n", "d=2*ht/math.tan(B_degree)\n", "d=round(d,1)\n", "print 'd=',d,'km'\n", "#By using radian measures for all angles\n", "d=2*a*(((pi/2)-B_rad)-(math.asin(a*math.cos(B_degree)/(a+ht) )))\n", "d=round(d,1)\n", "print 'd=',d,'km'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.7.1,Pg.no.574" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The attenuation coeff is 0.04 N/m\n", "The attenuation coeff in dB/m is 0.347 dB/m\n", "The attenuation coeff is 4.0 N/m\n", "The attenuation coeff in dB/m is 34.7 dB/m\n" ] } ], "source": [ "import math\n", "from math import pi,sqrt\n", "conductivity = 4 #measured in S/m\n", "rel_permittivity =80\n", "u=4*pi*10**-7\n", "f1=100 #measured in Hz\n", "f2=10**6 #measured in Hz\n", "#A)first it is necessary to evaluate the ratio of conductivity /w*rel permittivity\n", "w1=2*pi*f1\n", "r=conductivity/w1*rel_permittivity\n", "#Therefore we have to use following eq to calculate the attenuation coeff as\n", "a=sqrt(w1*conductivity*u/2)\n", "a=round(a,3)\n", "print 'The attenuation coeff is',a,'N/m'\n", "#By using the conversion factor N=8.686 dB\n", "a_dB=a*8.686\n", "a_dB=round(a_dB,3)\n", "print 'The attenuation coeff in dB/m is',a_dB,'dB/m'\n", "w2=2*pi*f2\n", "r=conductivity/w2*rel_permittivity\n", "a=sqrt(w2*conductivity*u/2)\n", "a=round(a,1)\n", "print 'The attenuation coeff is',a,'N/m'\n", "#By using the conversion factor 1N=8.686 dB\n", "a_dB=a*8.686\n", "a_dB=round(a_dB,1)\n", "print 'The attenuation coeff in dB/m is',a_dB,'dB/m'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }