{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 18 : Terrestrial Microwave system" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1 : pg 676" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The height of each tower must be at least 23.529 m\n" ] } ], "source": [ " \n", "# page no 676\n", "#calculate the height of each tower\n", "# prob no 18_1\n", "#given\n", "#Transmitter and receiver have same height at dist 40km\n", "d=40;#dist is 40 km\n", "#calculations\n", "h=(d**2)/68.;# As d=sqrt(17h)+sqrt(17h)\n", "#results\n", "print 'The height of each tower must be at least',round(h,3),'m'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2 : pg 678" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The distance by which beam must clear the obstacle is 11.63 m\n" ] } ], "source": [ " \n", "# page no 678\n", "# prob no 18_2\n", "from math import sqrt\n", "#calculate the distance required\n", "#A line of sight radio link at freq 6GHz with seperation 40 km betn antennas\n", "#given\n", "f=6.;d1=10.;d2=30;#obstacle located at 10 km\n", "#calculations\n", "#Determination of dist R to clear obstacle \n", "R=10.4*sqrt((d1*d2)/(f*(d1+d2)));\n", "#results\n", "print 'The distance by which beam must clear the obstacle is',round(R,2),'m'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3 : pg 679" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The power delivered to the Rx is -62.03 dBm\n" ] } ], "source": [ " \n", "# page no 679\n", "# prob no 18_3\n", "#calculate the power delivered\n", "from math import log10\n", "#given\n", "#A transmitter and receiver at 6GHz seperated by 40km with o/p power 2 W\n", "f = 6 * 10 ** 9\n", "d = 40.\n", "Pt = 2# power in watt\n", "#transmitting antenna gain Gt=20dBi,receiving antenna Gr=25dBi\n", "Gt = 20\n", "Gr = 25\n", "f_mhz = 6000#f=6000 MHz\n", "#calculations\n", "Pr_Pt_dB = (Gt + Gr) - (32.44 + (20 * log10(d)) + (20 * log10(f_mhz)))\n", "Pt_dBm = 10 * log10(Pt / 10 ** -3)\n", "Pr_dBm = Pt_dBm + Pr_Pt_dB\n", "#results\n", "print 'The power delivered to the Rx is',round(Pr_dBm,2),'dBm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4 : pg 680" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Noise temperature is 120.0 K\n" ] } ], "source": [ " \n", "# page no 680\n", "#calculate the noise temperature\n", "# prob no 18_4\n", "#given\n", "T_sky = 120.# Sky temp expressed in K\n", "L_dB = 2# antenna feedline loss\n", "#calculations\n", "L = 10 ** (L_dB / 10)\n", "# the noise temp is given as\n", "Ta = ((L - 1) * 290 + T_sky) / L\n", "#results\n", "print 'Noise temperature is',Ta,'K'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5 : pg 681" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The equivalent noise temperature 169.619 K\n" ] } ], "source": [ " \n", "# page no 681\n", "# prob no 18.5\n", "#calculate the equivalent noise temperature\n", "#given\n", "NF_dB = 2\n", "#calculations\n", "NF_power = 10 ** (NF_dB / 10.)\n", "T_eq = 290. * (NF_power - 1)\n", "#results\n", "print 'The equivalent noise temperature',round(T_eq,3),'K'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6 : pg 681" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The noise power is 9.6876e-14 W\n", "The thermal noise power is -100.138 dBm\n" ] } ], "source": [ " \n", "# page no 681\n", "# prob no 18.6\n", "# refer example no 18.4 and 18.5\n", "#calculate the noise power in both cases\n", "from math import log10\n", "#given\n", "# The antenna and feedline combination from ex 18.4 is used with the Rx from ex\n", "# 18.5\n", "Ta = 182.# noise temp of the antenna and feedline combination expressed in K\n", "Teq = 169.# noise temperature of the Rx\n", "B = 20. * 10 ** 6# BW of the receiver\n", "#calculations\n", "Tn_sys = Ta + Teq#Noise temp for the system\n", "k = 1.38 * 10 ** -23#Boltzmann constant\n", "# Noise power of the system is given as\n", "Pn = k * Tn_sys * B# where k is Boltzmann constant\n", "Pn_dBm = 10 * log10(Pn / 10 ** -3)\n", "#results\n", "print 'The noise power is',Pn,'W'\n", "print 'The thermal noise power is',round(Pn_dBm,3),'dBm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7 : pg 682" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Carrier to noise ratio is 38.0 dB\n" ] } ], "source": [ " \n", "# page no 682\n", "# prob no 18.7\n", "#calculate the carrier to noise ratio\n", "# refer ex no 18.3 and 18.6\n", "#given\n", "Pr_dBm = -62.#power at the receiver in dBm\n", "Pn_dBm = -100.#thermal noise power in dBm\n", "#calculations\n", "# carrier to noise ratio in dB is given as\n", "C_N = Pr_dBm - Pn_dBm\n", "#results\n", "print 'Carrier to noise ratio is',C_N,'dB'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8 : pg 683" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Energy per bit to noise density ratio is 27.14 dB\n" ] } ], "source": [ " \n", "# page no 683\n", "# prob no 18.8\n", "#calculate the energy per bit to noise density ratio\n", "# refer ex 18.7\n", "from math import log10\n", "#given\n", "fb = 40 * 10 ** 6# bit rate in bps\n", "Pr_dBm = -62#power at the receiver in dBm\n", "Pr = 10 ** (Pr_dBm / 10) * 10 ** -3# power at the receiver in W\n", "Eb = Pr / fb# the energy per bit in J\n", "k = 1.38 * 10 ** -23#Boltzmann constant\n", "T = 350.\n", "#calculations\n", "# the noise power density is\n", "No = k * T\n", "# Energy per bit to noise density ratio in dB is\n", "Eb_No = 10 * log10(Eb / No)\n", "#results\n", "print 'Energy per bit to noise density ratio is ',round(Eb_No,3),'dB'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9 : pg 686" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The local oscillator freq is 6800.0 MHz\n" ] } ], "source": [ " \n", "# page no 686\n", "# prob no 18.9\n", "# refer fig 18.7(b)\n", "#calculate the local oscillator frequency\n", "#given\n", "#This is the standard superheterodyne receiver\n", "fc=6870.;# the received carrier freq in MHz\n", "IF=70.;# IF in MHz\n", "#calculations\n", "# The local oscillator freq is given as\n", "f_lo=fc-IF;\n", "#results\n", "print 'The local oscillator freq is ',f_lo,'MHz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10 : pg 688" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The freq of shift oscillator is 160.0 MHz\n", "The local oscillator freq is 6640.0 MHz\n", "O/P of Mixer 3 is 6800.0 MHz\n" ] } ], "source": [ " \n", "# page no 688\n", "# prob no 18.10\n", "# refer fig 18.9a)\n", "#calculate the freq shift in all cases\n", "#given\n", "fc_r = 6870.# carrier freq of received signal in MHz\n", "fc_t = 6710.#carrier freq of transmitted signal in MHz\n", "IF = 70.#in MHz\n", "#calculations and results\n", "# the freq of shift oscillator is\n", "fso = fc_r - fc_t\n", "print 'The freq of shift oscillator is ',fso,'MHz'\n", "#the local oscillator freq is given as\n", "flo = fc_t - IF\n", "print 'The local oscillator freq is ',flo,'MHz'\n", "#from fig, mixer 3 will produce an o/p as\n", "op_mix3 = flo + fso\n", "print 'O/P of Mixer 3 is',op_mix3,'MHz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11 : pg 690" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The number of bits per symbol are 4.0 bits\n", "The baud rate is 22.631 Mbaud\n" ] } ], "source": [ " \n", "# page no 690\n", "# prob no 18.11\n", "#calculate the baud rate and bits per symbol\n", "#given\n", "from math import log\n", "# A typical microwave digital radio system uses 16-QAM.\n", "fb = 90.524#bit rate expressesd in Mbps\n", "n = 16# for 16-QAM system\n", "#calculations and results\n", "#part a) calculation of no of bits per symbol\n", "m = log(n) / log(2)\n", "print 'The number of bits per symbol are',m,'bits'\n", "# part b) calclation of baud rate\n", "# baud rate is 1/4th of the bit rate\n", "baud = fb / 4\n", "print 'The baud rate is',baud,'Mbaud'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }