{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 17 : MicroWave Devices" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1 : pg 621" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The max usable freq is 7500000000.0 Hz\n" ] } ], "source": [ "#calculate the max usable freq\n", "#page no 621\n", "#prob no. 17.1\n", "#given\n", "#TE10 mode in air dielectric mode with inside cross sectn=2cm*4cm\n", "#Determination of cut-off freq \n", "a=4.*10**-2;#largest dimn is used for calculation \n", "c=3.*10**8;#Speed of light in m/s\n", "#calculations\n", "fc=c/(2*a);\n", "#Determination of dominant mode of propagation over 2:1\n", "MUF=2*fc;\n", "#results\n", "print 'The max usable freq is',MUF,'Hz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2 : pg 624" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The group velocity is 198431348.33 m/s\n" ] } ], "source": [ "#calculate the group velocity \n", "#page no 624\n", "#prob no. 17.2\n", "#Determination of group velocity for waveguide in example 7.1\n", "from math import sqrt\n", "#given\n", "f=5*10**9;#freq.in Hz\n", "fc=3.75*10**9;#cut-off freq from eg.7.1\n", "c=3.*10**8;#speed of light in m/s\n", "#calculations\n", "vg=c*sqrt(1-(fc/f)**2);\n", "#results\n", "print 'The group velocity is',vg,'m/s'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3 : pg 624" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The group velocity for 12GHz signal is 165831239.518 m/s\n", "The group velocity for 17GHz signal is 242606948.556 m/s\n", "The diffn in the travel times for 2 signals is 9.5416670466e-08 sec\n" ] } ], "source": [ "#calculate the froup velocity \n", "#page no 624\n", "#prob no. 17.3\n", "#A waveguide with fc=10GHz.2 signal with frequency 12 & 17GHz propogate down=50m\n", "from math import sqrt\n", "#given\n", "fc=10*10**9;c=3.*10**8;f1=12.*10**9;f2=17.*10**9;d=50.;\n", "#calculations and results\n", "#Determination of group velocity for 12GHz\n", "vg1=c*sqrt(1-(fc/f1)**2);\n", "print 'The group velocity for 12GHz signal is',vg1,'m/s'\n", "#Determination of group velo for 17GHz\n", "vg2=c*sqrt(1-(fc/f2)**2);\n", "print 'The group velocity for 17GHz signal is',vg2,'m/s'\n", "#Determination of time taken for 50m dist by f1\n", "t1=d/vg1;\n", "#Determination of time taken for 50m dist by f2\n", "t2=d/vg2;\n", "#Determination of diffn in the travel times for 2 signals \n", "dela=t1-t2;\n", "print 'The diffn in the travel times for 2 signals is',dela,'sec'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4 : pg 627" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The phase velocity is 453557367.611 m/s\n" ] } ], "source": [ "#calculate the phase velocity \n", "#page no 627\n", "#prob no. 17.4\n", "#Determination of phase velo.with given 5GHz freq\n", "from math import sqrt\n", "#given\n", "f=5.*10**9;c=3.*10**8;fc=3.75*10**9;#Cut-off freq refering eg.17.1\n", "#calculations\n", "vp=c/sqrt(1-(fc/f)**2);#Calculation of phase velo.\n", "#results\n", "print 'The phase velocity is',vp,'m/s'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5 : pg 628" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The characteristic impedance of waveguide is 569.97 ohm\n" ] } ], "source": [ "#calculate the characteristic impedanccec of waveguide\n", "#page no 628\n", "#prob no. 17.5\n", "from math import sqrt\n", "#given\n", "#determination of characteristic impedance of waveguide with given 5GHz freq\n", "f=5*10**9;fc=3.75*10**9;#Refering in eg. 17.4\n", "#calculations\n", "Zo=377/sqrt(1-(fc/f)**2);\n", "#results\n", "print 'The characteristic impedance of waveguide is',round(Zo,3),'ohm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7 : pg 631" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The signal level in main guide is 19.0 dBm\n", "The signal level in secondary guide is 0.0 dBm\n", "The signal level from sec guide when reversed guide is -40.0 dBm\n" ] } ], "source": [ "#page no 631\n", "#prob no. 17.7\n", "#calculate the signal level in all cases\n", "#A signal with level of 20dBm & insertion loss=1dB & coupling =20dB,directivity=40dB\n", "#given\n", "sig_in=20.;loss=1.;couple=20.;direct=40.;\n", "#calculations and results\n", "#Determination of signal level in main guide\n", "sig_level_main=sig_in-loss;\n", "print 'The signal level in main guide is ',sig_level_main,'dBm'\n", "#Determination of signal level in secondary guide\n", "sig_level_sec=sig_in-couple;\n", "print 'The signal level in secondary guide is',sig_level_sec,'dBm'\n", "#If signal dirn in main guide were reveresed,the signal level in sec gide would reduced by 40dB to\n", "sig_sec_rev=(sig_level_sec)-(direct);\n", "print 'The signal level from sec guide when reversed guide is',sig_sec_rev,'dBm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8 : pg 642" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The frequency of oscillation is 14285714285.7 Hz\n" ] } ], "source": [ " \n", "#page no 642\n", "#prob no. 17.8\n", "#calculate the frequency of oscillation\n", "#given\n", "#A Gunn device with thickness=7um\n", "d=7*10**-6;v=10**5;#Basic velocity of e\n", "#calculations\n", "t=d/v;#Basic velocity relation\n", "#Determination of freq of oscillation\n", "f=1/t;#Inverse of period is freq\n", "#results\n", "print 'The frequency of oscillation is',f,'Hz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9 : pg 648" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The duty cycle is 0.065\n", "The length of pulse is 0.00065 sec\n" ] } ], "source": [ " \n", "#page no 648\n", "#prob no. 17.9\n", "#calculate the duty cycle and length of pulse\n", "#given\n", "#A pulse magnetron with avg power=1.2kW & peak power=18.5kW & 1 pulse is generated every 10ms\n", "Pavg=1.2*10**3;Pp=18.5*10**3;Tt=10.*10**-3;\n", "#calculations\n", "#Determination of duty cycle\n", "D=Pavg/Pp;\n", "#Determination of length of pulse\n", "Ton=D*Tt;\n", "#results\n", "print 'The duty cycle is',round(D,3)\n", "print 'The length of pulse is',round(Ton,5),'sec'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10 : pg 652" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a)The gain is 15.763 dBi\n", "b)The beamwidth in H-plane is 26.923 degree\n", "c)The beamwidth in H-plane is 28.966 degree\n" ] } ], "source": [ " \n", "#page no 652\n", "#prob no. 17.10\n", "#calculate the gain and beam width in all cases\n", "import math\n", "#A pyramidal horn has aperture=58mm in E-plane & 78mm in H-plane & operates at 10GHz\n", "#given\n", "f=10*10**9;c=3.*10**8;dH=78.*10**-3;dE=58.*10**-3;\n", "#calculations and results\n", "#a)Determination of gain in dB\n", "wl=c/f;#calculation of wavelength\n", "G=(7.5*dE*dH)/(wl**2);\n", "G_dBi=10*math.log10(G);#Converting to dBi\n", "print 'a)The gain is',round(G_dBi,3),'dBi'\n", "#b)Determination of beamwidth in H-palne\n", "theta_H=(70*wl)/dH;\n", "print 'b)The beamwidth in H-plane is',round(theta_H,3),'degree'\n", "#c)Determination of beamwidth in E-plane\n", "theta_E=(56*wl)/dE;\n", "print 'c)The beamwidth in H-plane is',round(theta_E,3),'degree'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11 : pg 654" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The antenna width = 53.03 m and The antenna length = 53.03 m\n" ] } ], "source": [ " \n", "#page no 654\n", "# problem no 17.11\n", "#calculate the width and length of the antenna\n", "#given\n", "from math import sqrt\n", "#for a square patch antenna\n", "f=2*10**6;# freq of operation in Hz\n", "Er=2;# relative permittivity\n", "c=3*10**8;# velo of light\n", "#calculations\n", "#wavelength is given as\n", "wl=c/(f*sqrt(Er));\n", "#The antenna width and length are each approximately half of this.\n", "w=wl/2;\n", "l=wl/2;\n", "#results\n", "print 'The antenna width = ',round(w,2),'m ','and ','The antenna length = ',round(l,2),'m'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12 : pg 657" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The received power is 1.01251354638e-14 W\n" ] } ], "source": [ " \n", "#page no 657\n", "#prob no. 17.12\n", "#calculate the received power\n", "import math\n", "#A radar Tx has power=10kW at freq=9.5GHz & target at 15km with cross sectn=10.2 m2 with gain of antenna is 20dBi\n", "f=9.5*10**9;Pt=10.*10**3;c=3.*10**8;G_dBi=20.;a=10.2;r=15.*10**3;\n", "#calculations\n", "#Determination of received power\n", "wl=c/f;#calculating wavelength\n", "G=10**(G_dBi/10.);#Converting to power ratio\n", "Pr=((wl**2)*Pt*(G**2)*a)/(((4*math.pi)**3)*(r**4));\n", "#results\n", "print 'The received power is',Pr,'W'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13 : pg 659" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The distance of target is 2250.0 m\n", "The maximum range is 150000.0 m\n", "The minimum range is 150.0 m\n" ] } ], "source": [ " \n", "#page no 659\n", "#prob no. 17.13a\n", "#calculate the distance of target\n", "#a pulse sent,returns after 15us\n", "#given\n", "t=15*10**-6;c=3.*10**8;\n", "tp=10**-6;#pulse duration of pulse radar\n", "f=10**3;#operating freq in Hz\n", "#calculations\n", "#Determination of distance of target\n", "R=(c*t)/2;\n", "#The maximum unambiguous range is \n", "Rmax=c/(2*f);\n", "#The minimum unambiguous range is \n", "Rmin=c*tp/2;\n", "#results\n", "print 'The distance of target is',R,'m'\n", "print 'The maximum range is ',Rmax,'m'\n", "print 'The minimum range is ',Rmin,'m'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14 : pg 662" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Doppler shift is 1777.78 Hz\n" ] } ], "source": [ " \n", "#page no 662\n", "#prob no. 17.14\n", "#calculate the doppler shift\n", "#given\n", "v=60.;#speed of vehicle moving towards radar in mph\n", "c=3*10**8;#velo of light in m/s\n", "f=10.**10;# operating frequency in Hz\n", "#calculations\n", "# conversion of speed from mph to km/hr\n", "v1=60*1.6;\n", "# conversion of speed from km/hr to m/s\n", "v2=v1*10**3/3600.;\n", "# Now the Doppler shift is found as\n", "fd=2*v2*f/c;\n", "#results\n", "print 'The Doppler shift is ',round(fd,2),'Hz'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }