{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 15 : Radio Wave Propagation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1 : pg 517" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The charasteristic impedance of polyethylene is 248.586 ohm\n" ] } ], "source": [ "#page no 517\n", "#calculate the characteristic impedance of polyethylene\n", "#prob no. 15.1\n", "from math import sqrt\n", "#Dielectric constt=2.3\n", "#given\n", "er=2.3;\n", "#calculations\n", "#Determination of characteristic impedance\n", "Z=377./sqrt(er);\n", "#results\n", "print 'The charasteristic impedance of polyethylene is',round(Z,3),'ohm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2 : pg 518" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The max power density is 23.873 GW/m2\n" ] } ], "source": [ "#calculate the max power density \n", "#page no 518\n", "#prob no. 15.2\n", "#given\n", "#Dielelectric strength of air=3MV/m\n", "e=3*10**6;#electric field strength\n", "Z=377.;#impedance of air\n", "#calculations\n", "Pd=(e**2)/Z;#Determination of power density\n", "#results\n", "print 'The max power density is',round(Pd/10**9,3),'GW/m2'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3 : pg 520" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Power density at a point 10km 79.5774715459 nW/m2\n" ] } ], "source": [ "#calculate the power density \n", "#page no 520\n", "#prob no. 15.3\n", "from math import pi\n", "#given\n", "#An isotropic radiator with power 100W & dist given is 10km\n", "Pt=100;r=10*10**3;\n", "#calculations\n", "#Determination of power density at r=10km\n", "Pd=Pt/(4*pi*(r**2));\n", "#results\n", "print 'Power density at a point 10km',Pd*10**9,'nW/m2'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4 : pg 521" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The electric field strength is 5.47722557505 mW/m\n" ] } ], "source": [ "#calculate the electric field strength \n", "#page no 521\n", "#prob no. 15.4\n", "from math import sqrt\n", "#given\n", "#An isotropic radiator radiates power=100W at point 10km\n", "Pt=100.;r=10.*10**3;\n", "#calculations\n", "#Determination of electric field strength\n", "e=sqrt(30*Pt)/r;\n", "#results\n", "print 'The electric field strength is',e*1000,'mW/m'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5 : pg 525" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The power delivered to receiver is 405.812 nW\n" ] } ], "source": [ "#calculate the power delivered \n", "#page no 525\n", "#prob no. 15.5\n", "from math import log10\n", "#A transmitter with power o/p=150W at fc=325MHz.antenna gain=12dBi receiver antenna gain=5dBi at 10km away\n", "#given\n", "#considering no loss in the system\n", "d=10.;Gt_dBi=12.;Gr_dBi=5.;fc=325.;Pt=150.;\n", "#calculations\n", "#Determination of power delivered\n", "Lfs=32.44+(20*log10(d))+(20*log10(fc))-(Gt_dBi)-(Gr_dBi);\n", "Pr=Pt/(10**(Lfs/10));\n", "#results\n", "print 'The power delivered to receiver is',round(Pr*10**9,3),'nW'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6 : pg 525" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The power delivered to receiver is 2.04329571558e-09 W\n" ] } ], "source": [ "#calculate the power delivered to receiver \n", "#page no 525\n", "#prob no. 15.6\n", "#given\n", "from math import log10\n", "#A transmitter with o/p power=10W at fc=250MHz,connected to Tx 10m line with loss=3dB/100m t0 antenna with gain=6dBi.\n", "#Rx antenna 20km away with gain=4dBi \n", "#Refer fig.15.6,assuming free space propagation\n", "d=20;fc=250.;Gt_dBi=6.;Gr_dBi=4.;loss=3./100;Zl=75.;Zo=50.;L=10.;Pt=10.;\n", "#calculations\n", "Lfs=32.44+(20*log10(d))+(20*log10(fc))-Gt_dBi-Gr_dBi;#path loss\n", "\n", "L_tx=L*loss;#Determination of loss\n", "ref_coe=(Zl-Zo)/(Zl+Zo);#Reflection coefficient\n", "L_rx=1-(ref_coe**2);#Proportion of incident power that reaches load\n", "L_rx_dB=-10*log10(L_rx);#Converting that proportion in dB\n", "#Determination of total loss Lt\n", "Lt=(Lfs)+(L_tx)+(L_rx_dB);\n", "#Determination of power delivered to receiver\n", "Pt_Pr=10**(Lt/10);#Power ratio\n", "Pr=Pt/Pt_Pr;\n", "#results\n", "print 'The power delivered to receiver is',Pr,'W'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7 : pg 530" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The angle of refraction is 10.313 degree\n" ] } ], "source": [ "#calculate the angle of refraction \n", "#page no 530\n", "#prob no. 15.7\n", "#given\n", "from math import sqrt, sin, asin,pi\n", "#A radio wave moves from air(er=1) to glass(er=7.8).angle of incidence=30 deg\n", "theta_i=30.;er1=1;er2=7.8;\n", "#calculations\n", "#determination of angle of refraction\n", "theta_r=asin((sin(theta_i*pi/180.))/(sqrt(er2/er1)));\n", "#results\n", "print 'The angle of refraction is',round(theta_r*180/pi,3),'degree'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8 : pg 537" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The max usable freq MUF is 33.92 MHz\n" ] } ], "source": [ "#calculate the max usable freq \n", "#page no 537\n", "#prob no. 15.8\n", "#given\n", "from math import cos,pi\n", "#A Tx statn with fc=11.6MHz & angle of incidence=70 degree\n", "theta_i=70.;fc=11.6;#in MHz\n", "#calculations\n", "#determination of max usable freq(MUF)\n", "MUF=fc/(cos(theta_i*pi/180.));\n", "#results\n", "print 'The max usable freq MUF is',round(MUF,2),'MHz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9 : pg 539" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a)The max common distance between dispatcher & taxi 21.018 km\n", "The max common distance between two taxi is 10.1 km\n" ] } ], "source": [ "#calculate the max common distance in both cases \n", "#page no 539\n", "#prob no. 15.9\n", "#given\n", "from math import sqrt\n", "#A taxi compony using central dispatcher with antenna height=15m & taxi antenna height=1.5m\n", "ht=15.;hr=1.5;\n", "#calculations and results\n", "#a)Determination of max commn dist betn dispatcher and taxi\n", "d1=sqrt(17*ht)+sqrt(17*hr);\n", "print 'a)The max common distance between dispatcher & taxi',round(d1,3),'km'\n", "#b)Determination of max ommn dist betn 2 taxis\n", "d2=sqrt(17*hr)+sqrt(17*hr);#ht=hr=height of antenna of taxi cab\n", "print 'The max common distance between two taxi is',round(d2,3),'km'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11 : pg 545" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The fading period is 0.01125 sec\n", "The fading period is 0.00474 sec\n" ] } ], "source": [ "#calculate the fading period in both cases \n", "# page no 545\n", "# prob no 15.11\n", "#given\n", "# An automobile travels at 60km/hr\n", "v=60.*10**3/(60*60);#conversion of car's speedto m/s\n", "c=3.*10**8;#speed of light\n", "#part a) calculation of time between fades if car uses a cell phone at 800*10**6Hz\n", "f=800.*10**6;\n", "#calculations and results\n", "T=c/(2*f*v);\n", "print 'The fading period is',T,'sec'\n", "#part b) calculation of time between fades if car uses a PCS phone at 1900*10**6Hz\n", "f=1900.*10**6;\n", "T=c/(2*f*v);\n", "print 'The fading period is',round(T,5),'sec'\n", "# Note that the rapidity of the fading increases with both the frequency of the transmissions and the speed of the vehicle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12 : pg 550" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of cell sites are 72.0\n" ] } ], "source": [ "#calculate the no. of cell sites \n", "#page no 550\n", "#given\n", "# problem no 15.12\n", "A=1000.;#metropolitian area expressed in sq. km\n", "r=2;#radius of cell in km\n", "#calculations\n", "# Number of cell sites given as\n", "N=A/(3.464*r**2);\n", "#results\n", "print 'Number of cell sites are',round(N)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }