{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 14 : Transmission lines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1 : pg 461" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The inductance of 1m length is 225.0 nH/m\n" ] } ], "source": [ " \n", "#page no 461\n", "#prob no. 14.1\n", "#calculate the inductance\n", "#A coaxial cable with capacitance=90pF/m & characteristic impedance=50 ohm\n", "#given\n", "C=90.*10**-12;Zo=50.;\n", "#Determination of inductance of 1m length\n", "#calculations\n", "L=(Zo**2)*C;\n", "#results\n", "print 'The inductance of 1m length is',L*10**9,'nH/m'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2 : pg 462" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a)The characteristic impedance of conductor is 227.399 ohm\n", "b)The characteristic impedance of coaxial cable is 54.784 ohm\n" ] } ], "source": [ " \n", "#page no 462\n", "#prob no. 14.2\n", "#calculate the imepdance \n", "from math import log10,sqrt\n", "#a)Determination of impedance of open wire with diameter 3mm & r=10mm\n", "#given\n", "D=3./2.;r=10.;#All values are in mm\n", "#calculations and results\n", "Zo1=276*log10(r/D); \n", "print 'a)The characteristic impedance of conductor is',round(Zo1,3),'ohm'\n", "#b)Determination of impedance of coaxial with er=2.3,inner diameter=2mm & outer diameter=8mm\n", "er=2.3;D=8.;d=2;#All diameter values in mm\n", "Zo2=(138/sqrt(er))*log10(D/d);\n", "print 'b)The characteristic impedance of coaxial cable is',round(Zo2,3),'ohm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3 : pg 463" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of velocity factor is 0.69\n", "The value of propagation velo. is 207019667.803 m/s\n" ] } ], "source": [ " \n", "#page no 463\n", "#prob no. 14.3\n", "#calculate the velocity factor and propagation velocity\n", "#Cable with teflon dielectric er=2.1\n", "from math import sqrt\n", "#given\n", "er=2.1;c=3.*10**8;#Velocity of light\n", "#calculations and results\n", "#Determination of velocity factor\n", "Vf=1/sqrt(er);\n", "print 'The value of velocity factor is',round(Vf,3)\n", "#Determination of propagation velocity\n", "Vp=Vf*c;\n", "print 'The value of propagation velo. is',Vp,'m/s'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4 : pg 468" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The total voltage at the load is 0.333 V\n", "The voltage across the line 0.333 V\n" ] } ], "source": [ " \n", "#page no 468\n", "#prob no. 14.4\n", "#calculate the voltage\n", "#Refer fig. 14.13(a)\n", "vs=1;#source voltage\n", "Rs=50.;#source resistance\n", "Zo=50.;#line impedance\n", "RL=25.;#load resistance\n", "l=10.;#length of line\n", "vf=0.7;#velocity factor\n", "Vi=0.5;\n", "c=3.*10**8;#velo of light\n", "#calculations\n", "#Vs will divide between Rs and Zo of the line.Since two resistors are equal,the voltage will divide equally.\n", "#Therefore at t=0,the voltage at the source end of the line will rise from zero to 0.5V. \n", "#The voltage at the load will remain zero untill the surge reaches it.The time for this is\n", "T=l/(vf*c);\n", "# After T sec, the voltage at the load will rise.The reflection coefficient is given as\n", "refl_coeff=(RL-Zo)/(RL+Zo)\n", "#Now reflection voltage is \n", "Vr=refl_coeff * Vi;\n", "#The total voltage at the load is\n", "Vt=Vr+Vi;\n", "# The reflected voltage will propogate back along the line,reaching \n", "#the source at time 2T.After this the voltage will be 0.3335V all along the line\n", "#The voltage across the line, and the load will be\n", "VL=vs*(RL/(RL+Zo));\n", "#results\n", "print 'The total voltage at the load is',round(Vt,3),'V'\n", "print 'The voltage across the line',round(VL,3),'V'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5 : pg 472" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The length reqd for phase shift is 0.12375 m\n" ] } ], "source": [ " \n", "#page no 472\n", "#prob no. 14.5\n", "#calculate the length reqd\n", "#Standard coaxial cable RG-8/U with 45 degree phase shift at 200MHz\n", "#given\n", "p=45.;f=200.*10**6;c=3.*10**8;#Speed of light in m/s\n", "vf=0.66;#velo. factor for this line\n", "#calculations\n", "vp=vf*c;#Determination of propagation velo.\n", "wav=vp/f;#Determination of wavelength of signal\n", "#Determination of reqd length for 45 degree phase shift\n", "L=wav*(p/360.);\n", "#results\n", "print 'The length reqd for phase shift is',L,'m'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6 : pg 476" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of SWR is 2.0\n" ] } ], "source": [ " \n", "#page no 476\n", "#prob no. 14.6\n", "#calculate the value of SWR\n", "#A 50ohm line terminated in 25ohm resistance\n", "Zo=50.;Zl=25.;\n", "#calculations\n", "#Determination of SWR\n", "SWR=Zo/Zl;#In this case Zo>Zl\n", "#results\n", "print 'The value of SWR is',SWR" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7 : pg 477" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The amount of power reflected is 12.5 mW\n", "The power dissipated in load is 37.5 mW\n" ] } ], "source": [ " \n", "#page no 477\n", "#prob no. 14.7\n", "#calculate the power\n", "#A generator sends 50mW at 50ohm line & reflection coeff I=0.5\n", "#given\n", "Pi=50.;I=0.5;\n", "#calculations\n", "#Determination of amount of power reflected\n", "Pr=(I**2)*Pi;\n", "#Determination of remainder power that reaches load\n", "Pl=Pi-Pr;\n", "#results\n", "print 'The amount of power reflected is',Pr,'mW'\n", "print 'The power dissipated in load is',Pl,'mW'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8 : pg 478" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The power absorbed by load is 44.444 W\n" ] } ], "source": [ " \n", "#page no 478\n", "#prob no. 14.8\n", "#A transmitter supplies 50W with SWR 2:1\n", "#calculate the power\n", "#given \n", "Pi=50.;SWR=2.;\n", "#calculations\n", "#Determination of power absorbed by load\n", "Pl=(4*SWR*Pi)/(1+SWR)**2;\n", "#results\n", "print 'The power absorbed by load is',round(Pl,3),'W'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9 : pg 480" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The impedance looking toward the load (40-30j) ohm\n" ] } ], "source": [ " \n", "# page no 545\n", "# prob no 14.9\n", "#calculate the impedance\n", "from math import pi,tan\n", "#given\n", "Zo=50.;# line impedence in ohm\n", "ZL=100.;# load impedance in ohm\n", "vf=0.8;#velocity factor\n", "l=1.;#length of line\n", "f=30.*10**6;# freq of operation\n", "c=3.*10**8;#velo of light\n", "#calculations\n", "# we have to find the length of line in degree\n", "wl=vf*c/f#wavelength\n", "# Then the length of line in degree is\n", "ang=l/wl*360\n", "# calculation of impedance\n", "Z=Zo*(ZL+(1j*Zo*tan(ang*pi/180)))/(Zo+(1j*ZL*tan(ang*pi/180.)));\n", "print 'The impedance looking toward the load',Z,'ohm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10 : pg 481" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The length should be 0.1425 m\n" ] } ], "source": [ " \n", "#page no 481\n", "#prob no. 14.10\n", "#calculate the length required\n", "#A series tuned ckt tuned at 1GHz\n", "#given\n", "vf=0.95;c=3.*10**8;f=10**9;\n", "#calculations\n", "vp=vf*c;#determination of propagation velo.\n", "wav=vp/f;#Determination of wavelength \n", "#Determination of length\n", "L=wav/2;#Since half wavelength section wiil be series resonant\n", "#results\n", "print 'The length should be',L,'m'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11 : pg 481" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The transmitter power must be 151.356 W\n" ] } ], "source": [ " \n", "#page no 481\n", "#prob no. 14.10\n", "#calculate the transmitter power\n", "#A Tx deliver 100W to antenna through 45m coaxial cable with loss=4dB/100m\n", "#given\n", "loss=4./100;L=45.;Pout=100.;\n", "#calculations\n", "loss_dB=L*loss;#Determination of loss in dB\n", "Pin_Pout=10**(loss_dB/10);\n", "#Determination of Tx power\n", "Pin=Pout*Pin_Pout;\n", "#results\n", "print 'The transmitter power must be',round(Pin,3),'W'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13 : pg 490" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Input impedance is (19.36+5.44j) ohm\n" ] } ], "source": [ " \n", "#page no 490\n", "#prob no. 14.13\n", "#calculate the input impedance\n", "Zo=50.;#line impedance in ohm\n", "f=100.*10**6;#operating freq\n", "vf=0.7;#velocity factor\n", "L=6.;#length in m\n", "c=3.*10**8;#velo of light\n", "ZL=50+1j*50;#load impedance in ohm\n", "#calculations\n", "# we have to calculate length in degree,so for this first find wl\n", "wl=vf*c/f;#wavength in m\n", "ang=360*L/wl;\n", "# now from the graph input impedance is 19.36+%i5.44;\n", "Zi=19.36+1j*5.44;\n", "#results\n", "print 'Input impedance is',Zi,'ohm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14 : pg 492" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The required turn ratio is (0.752156137344+0j)\n" ] } ], "source": [ " \n", "#page no 492\n", "#prob no. 14.14\n", "from cmath import sqrt\n", "#given\n", "Zo=50.;#line impedance in ohm\n", "ZL=75.+1j*25;\n", "# the requirment of this is simply to match the 50ohm line to the impedsnce at this point on the line,which is 88.38 ohm,resistive.\n", "Z2=88.38;#in ohm\n", "#calculations\n", "#The required turn ratio is\n", "N1_N2=sqrt(Zo/Z2);\n", "#results\n", "print 'The required turn ratio is',N1_N2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15 : pg 494" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Zo = 66.476\n" ] } ], "source": [ " \n", "#page no 494\n", "#prob no. 14.15\n", "#calculate the impedance\n", "# refer prob no 14.14\n", "from math import sqrt\n", "#given\n", "Zo=50.;#line impedance in ohm\n", "Z2=88.38;#in ohm\n", "#calculations\n", "Zo_=sqrt(Zo*Z2);\n", "#results\n", "print 'Zo = ',round(Zo_,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16 : pg 494" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Capacitance is 2.12206590789e-11 F\n" ] } ], "source": [ " \n", "#page no 494\n", "#prob no. 14.16\n", "#calculate the capacitance\n", "from math import pi\n", "#given\n", "Zo=50.;#line impedance in ohm\n", "f=100.*10**6;#operating freq in Hz\n", "ZL1=50+1j*75;# load impedance with Xc=75\n", "Xc=75;\n", "#calculations\n", "# Capacitance in farads is given as\n", "C=1/(2*pi*f*Xc);\n", "#results\n", "print 'Capacitance is',C,'F'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 17 : pg 497" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of stude is 0.014 S\n" ] } ], "source": [ " \n", "#page no 497\n", "#prob no. 14.17\n", "#calculate the value of stude\n", "#given\n", "Zo=72.;#line impedance in ohm\n", "ZL=120.-1j*100;#load impedance\n", "#calculations\n", "#The stub must be inserted at a point on the line where the real part of the load admittance is correct. This value is\n", "s=1/Zo;\n", "#results\n", "print 'The value of stude is',round(s,3),'S'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18 : pg 501" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The distance is 168.0 m\n" ] } ], "source": [ " \n", "#page no 501\n", "#prob no. 14.18\n", "#calculate the distance\n", "#given\n", "#A TDR display shows dscontinuity at 1.4us & vf=0.8\n", "t=1.4*10**-6;vf=0.8;c=3.*10**8;#Speed of light\n", "#Determination of distance of fault\n", "#calculations\n", "d=(vf*c*t)/2;#One-half time is used to calculate\n", "#results\n", "print 'The distance is',d,'m'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 19 : pg 503" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The wavelength is 46.0 cm\n", "The freq is 619.565 MHz\n" ] } ], "source": [ " \n", "#page no 503\n", "#prob no. 14.19\n", "#calculate the wavelength and freq\n", "#given\n", "#2 adjacent minima on slotted are 23cm apart with velo factor=95%\n", "L=23*10**-2;vf=0.95;c=3*10**8;#Velo. of light in m/s\n", "#calculations and results\n", "#Determination of wavelength\n", "wav=2*L;#Minima are seperated by one-half wavelength\n", "print 'The wavelength is',wav*100,'cm'\n", "#Determination of freq.\n", "f=(vf*c)/wav;#vp=vf*c\n", "print 'The freq is' ,round(f/10**6,3),'MHz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 20 : pg 504" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of SWR is 2.15\n" ] } ], "source": [ " \n", "#page no 504\n", "#prob no. 14.20\n", "#calculate the value of SWR\n", "from math import sqrt\n", "#given\n", "#Frwd power in Tx line is 150W,Reverse power=20W\n", "Pi=150.;Pr=20.;#All power in watt\n", "#calculations\n", "#Determination of SWR\n", "SWR=(1+sqrt(Pr/Pi))/(1-sqrt(Pr/Pi));\n", "#results\n", "print 'The value of SWR is',round(SWR,3)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }