{ "metadata": { "name": "", "signature": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4 - Differential amplifiers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.1 - page 317" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_CC= 10 # in volt\n", "V_EE= -10 # in volt\n", "I= 1 # in mA\n", "I=I*10**-3 # in A\n", "R_C= 10 # in kohm\n", "R_C=R_C*10**3 # in kohm\n", "V_BE=0.7 # in volt\n", "\n", "i_C1= I/2 # in A\n", "i_C2= i_C1 # in A\n", "print \"Value of i_C1 = %0.2f mA\" %(i_C1*10**3)\n", "\n", "V_C1= V_CC-i_C1*R_C # in V\n", "# For V_cm=0 volt\n", "V_E= -0.7 # in volt\n", "V_CE1= V_C1-V_E # in volt\n", "print \"For V_cm =0, The value of V_CE1 = %0.2f Volt\" %(V_CE1)\n", "\n", "# For V_cm= -5 volt\n", "V_cm= -5 # in V\n", "V_B= V_cm # in V\n", "# From V_BE= V_B-V_E\n", "V_E= V_B-V_BE # in volt\n", "V_CE1= V_C1-V_E # in volt\n", "print \"For V_cm =-5V, The value of V_CE1 = %0.2f Volt\" %V_CE1\n", "\n", "# For V_cm= 5 volt\n", "V_cm= 5 # in V\n", "V_B= V_cm # in V\n", "V_E= V_B-V_BE # in volt\n", "V_CE1= V_C1-V_E # in volt\n", "print \"For V_cm =5V, The value of V_CE1 = %0.2f Volt\" %V_CE1" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of i_C1 = 0.50 mA\n", "For V_cm =0, The value of V_CE1 = 5.70 Volt\n", "For V_cm =-5V, The value of V_CE1 = 10.70 Volt\n", "For V_cm =5V, The value of V_CE1 = 0.70 Volt\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.2 - page 338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import sqrt\n", "# Given data\n", "V_DD= 1.5 # in V\n", "V_SS= V_DD # in V\n", "KnWL= 4 # in mA/V**2\n", "KnWL=KnWL*10**-3 # in A/V**2\n", "Vt= 0.5 # in V\n", "I=0.4 # in mA\n", "I=I*10**-3 #in A\n", "R_D= 2.5 # in k\u03a9\n", "R_D= R_D*10**3 # in \u03a9\n", "\n", "# Part (a)\n", "print \"Part (a)\"\n", "V_OV= sqrt(I/KnWL) # in V\n", "V_GS= V_OV+Vt # in V\n", "print \"Value of V_OV = %0.2f Volt\" %V_OV\n", "print \"Value of V_GS = %0.2f Volt\" %V_GS\n", "\n", "# Part (b)\n", "print \"Part (b)\"\n", "V_CM= 0 # in volt\n", "V_S= -V_GS # in volt\n", "print \"Value of V_S = %0.2f Volt\" %V_S\n", "I=0.4 # in mw\n", "i_D1= I/2 # in mA\n", "print \"Value of i_D1 = %0.2f mA\" %i_D1\n", "i_D1=i_D1*10**-3 # in A\n", "V_D1= V_DD-i_D1*R_D # in V\n", "V_D2=V_D1 # in V\n", "print \"Value of V_D1 = %0.2f Volt\" %V_D1\n", "print \"Value of V_D2 = %0.2f Volt\" %V_D2\n", "\n", "\n", "# Part (c)\n", "print \"Part (c)\"\n", "V_CM=1 # in V\n", "V_GS= 0.82 # in V\n", "V_G= 1 # in V\n", "V_S= V_G-V_GS # in V\n", "print \"Value of V_S = %0.2f Volt\" %V_S\n", "i_D1= I/2 # in mA\n", "print \"Value of i_D1 = %0.2f mA\" %i_D1\n", "i_D1=i_D1*10**-3 # in A\n", "V_D1= V_DD-i_D1*R_D # in V\n", "V_D2=V_D1 # in V\n", "print \"Value of V_D1 = %0.2f Volt\" %V_D1\n", "print \"Value of V_D2 = %0.2f Volt\" %V_D2\n", "\n", "# Part (d)\n", "print \"Part (d)\"\n", "V_CM_max= Vt+V_DD-i_D1*R_D\n", "print \"Highest value of V_CM = %0.2f Volt\" %V_CM_max\n", "\n", "# Part (e)\n", "V_S= 0.4 # in V\n", "print \"Part (e)\"\n", "V_CM_min= -V_SS+V_S+Vt+V_OV # in V\n", "print \"Lowest value of V_CM = %0.2f Volt \" %V_CM_min\n", "V_Smin= V_CM_min-V_GS # in volt\n", "print \"Lowest value of V_S = %0.2f Volt\" %V_Smin" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (a)\n", "Value of V_OV = 0.32 Volt\n", "Value of V_GS = 0.82 Volt\n", "Part (b)\n", "Value of V_S = -0.82 Volt\n", "Value of i_D1 = 0.20 mA\n", "Value of V_D1 = 1.00 Volt\n", "Value of V_D2 = 1.00 Volt\n", "Part (c)\n", "Value of V_S = 0.18 Volt\n", "Value of i_D1 = 0.20 mA\n", "Value of V_D1 = 1.00 Volt\n", "Value of V_D2 = 1.00 Volt\n", "Part (d)\n", "Highest value of V_CM = 1.50 Volt\n", "Part (e)\n", "Lowest value of V_CM = -0.28 Volt \n", "Lowest value of V_S = -1.10 Volt\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.3 - page 341" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I= 0.4 # in mA\n", "unCox= 0.2 # in mA/V**2\n", "i_D= I/2 # in mA\n", "V_OV1= 0.2 # in V\n", "V_OV2= 0.3 # in V\n", "V_OV3= 0.4 # in V\n", "WbyL1= 2*i_D/(unCox*V_OV1**2) \n", "gm1= I/V_OV1 # in mA/V\n", "WbyL2= 2*i_D/(unCox*V_OV2**2) \n", "gm2= I/V_OV2 # in mA/V\n", "WbyL3= 2*i_D/(unCox*V_OV3**2) \n", "gm3= I/V_OV3 # in mA/V\n", "print \"Vov (in V) \",V_OV1,\" \",V_OV2,\" \",V_OV3\n", "print \"W/L \",WbyL1,\" \",round(WbyL2,1),\" \",WbyL3\n", "print \"gm(in mA/V) \",gm1,\" \",round(gm2,2),\" \",gm3" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vov (in V) 0.2 0.3 0.4\n", "W/L 50.0 22.2 12.5\n", "gm(in mA/V) 2.0 1.33 1.0\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.4 - page 341" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_A= 20 # in V\n", "R_D= 5 # in k\u03a9\n", "R_D= R_D*10**3 # in \u03a9\n", "I= 0.8 # in mA\n", "I=I*10**-3 # in A\n", "i_D= I/2 # in A\n", "unCox= 0.2 # mA/V**2\n", "unCox= unCox*10**-3 # in A/V**2\n", "WbyL= 100 \n", "# Formula i_D= 1/2*unCox*WbyL*V_OV**2\n", "V_OV= sqrt(2*i_D/(unCox*WbyL)) # in V\n", "print \"The value of V_OV = %0.2f Volts\" %V_OV\n", "gm= I/V_OV # in A/V \n", "print \"The value of gm = %0.f mA/V\" %(gm*10**3)\n", "r_o= V_A/i_D # in \u03a9\n", "print \"The value of r_o = %0.f k\u03a9\" %(r_o*10**-3)\n", "# Ad= v_o/v_id = gm*(R_D || r_o)\n", "Ad= gm*(R_D*r_o/(R_D+r_o)) # in V/V\n", "print \"Differential gain = %0.1f V/V \" %Ad" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of V_OV = 0.20 Volts\n", "The value of gm = 4 mA/V\n", "The value of r_o = 50 k\u03a9\n", "Differential gain = 18.2 V/V \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.5 - page 342" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from numpy import log10\n", "# Given data\n", "R_D= 5 # in k\u03a9\n", "R_D= R_D*10**3 # in \u03a9\n", "R_SS= 25 # in k\u03a9\n", "R_SS= R_SS*10**3 # in \u03a9\n", "I= 0.8 # in mA\n", "I=I*10**-3 # in A\n", "i_D= I/2 # in A\n", "unCox= 0.2 # mA/V**2\n", "unCox= unCox*10**-3 # in A/V**2\n", "WbyL= 100 \n", "# Formula i_D= 1/2*unCox*WbyL*V_OV**2\n", "V_OV= sqrt(2*i_D/(unCox*WbyL)) # in V\n", "gm= i_D/V_OV # in A/V \n", "\n", "# Part (a)\n", "Ad= 1/2*gm*R_D # in V/V\n", "print \"Differential gain = %0.f V/V\" %(Ad)\n", "Acm= -R_D/(2*R_SS) # in V/V\n", "print \"Common mode gain = %0.1f V/V\" %Acm\n", "CMRR= abs(Ad)/abs(Acm) \n", "CMRRindB= round(20*log10(CMRR)) # in dB\n", "print \"Common mode rejection ratio = %0.f dB\" %CMRRindB\n", "\n", "\n", "# Part (b)\n", "print \"Part (b) when output is taken differentially\"\n", "Ad= gm*R_D # in V/V\n", "print \"Differential gain = %0.f V/V\" %Ad\n", "Acm= 0 \n", "print \"Common mode gain = %0.1f V/V \"%Acm\n", "CMRRindB= 20*log10(Ad/Acm) # in dB\n", "print \"Common mode rejection ratio = %0.f dB\" %CMRRindB\n", "\n", "\n", "# Part (c)\n", "print \"Part (c) when output is taken differentially but the drain resistance have a 1% mismatch.\"\n", "Ad= gm*R_D # in V/V\n", "print \"Differential gain = %0.f V/V\" %Ad\n", "# delta_R_D= 1% of R_D\n", "delta_R_D= R_D*1.0/100 # in \u03a9 \n", "Acm= R_D/(2*R_SS)*delta_R_D/R_D # in V/V\n", "print \"Common mode gain = %0.3f V/V\" %Acm\n", "CMRRindB= 20*log10(abs(Ad)/abs(Acm)) # in dB\n", "print \"Common mode rejection ratio = %0.1f dB\" %CMRRindB\n", "\n", "# Note: In the book, there is putting wrong value of Ad (20 at place of 10)\n", "#to evaluate the value of CMRR in dB in part(c) , So the answer of CMRR in dB of Part (c) is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Differential gain = 5 V/V\n", "Common mode gain = -0.1 V/V\n", "Common mode rejection ratio = 34 dB\n", "Part (b) when output is taken differentially\n", "Differential gain = 10 V/V\n", "Common mode gain = 0.0 V/V \n", "Common mode rejection ratio = inf dB\n", "Part (c) when output is taken differentially but the drain resistance have a 1% mismatch.\n", "Differential gain = 10 V/V\n", "Common mode gain = 0.001 V/V\n", "Common mode rejection ratio = 80.0 dB\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.6 - page 343" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data (From Exa 4.4)\n", "R_D= 5 # in k\u03a9\n", "R_D= R_D*10**3 # in \u03a9\n", "R_SS= 25 # in k\u03a9\n", "R_SS= R_SS*10**3 # in \u03a9\n", "I= 0.8 # in mA\n", "I=I*10**-3 # in A\n", "i_D= I/2 # in A\n", "unCox= 0.2 # mA/V**2\n", "unCox= unCox*10**-3 # in A/V**2\n", "WbyL= 100 \n", "# Formula i_D= 1/2*unCox*WbyL*V_OV**2\n", "V_OV= sqrt(2*i_D/(unCox*WbyL)) # in V\n", "gm= i_D/V_OV # in A/V \n", "# gm mismatch have a negligible effect on Ad\n", "Ad= gm*R_D # in V/V(approx) \n", "# delta_gm= 1% of gm\n", "delta_gm = gm*1/100 # in A/V\n", "Acm= R_D/(2*R_SS)*delta_gm/gm \n", "CMRRindB= 20*log10(Ad/Acm) \n", "print \"CMRR is %0.f dB\"%CMRRindB" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "CMRR is 80 dB\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.7 - page 344" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "V_CM= 0 \n", "V_BE= -0.7 # in volt\n", "v_E= V_CM-V_BE # in volt\n", "print \"Value of v_E = %0.1f Volts\" %v_E\n", "\n", "I_E= (5-0.7)/10**3 # in A\n", "v_B1= 0.5 # in V\n", "v_B2= 0 # in V\n", "# Due to Q1 is off therefore\n", "v_C1= -5 # in V\n", "v_C2= I_E*10**3-5 # in V\n", "print \"Value of v_C1 = %0.1f Volts\" %v_C1\n", "print \"Value of v_C2 = %0.1f Volts\" %v_C2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of v_E = 0.7 Volts\n", "Value of v_C1 = -5.0 Volts\n", "Value of v_C2 = -0.7 Volts\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.8 - page 345" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import log\n", "# Given data \n", "iE1_by_I= 0.99 # as it is given that iE1= 0.99 *I\n", "VT= 0.025 # in volt\n", "# Formula iE1= I/(1+%e**(-vid/VT))\n", "# %e**(-vid/VT)= 1/iE1_by_I-1\n", "vid= log( 1/iE1_by_I-1)*(-VT) # in volt\n", "print \"Input differential signal = %0.1f mV\" %round(vid*10**3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Input differential signal = 115.0 mV\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.9 - page 345" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "Beta= 100 \n", "\n", "# Part (a)\n", "RE= 150 # in \u03a9\n", "VT= 25 # in mV\n", "VT= VT*10**-3 # in V\n", "IE= 0.5 # in mA\n", "IE=IE*10**-3 # in A\n", "re1= VT/IE #in \u03a9\n", "R_id= 2*(Beta+1)*(re1+RE) # in \u03a9\n", "R_id= round(R_id*10**-3) # in k\u03a9\n", "print \"(a) The input differential resistance = %0.1f k\u03a9\" %R_id\n", "\n", "# Part (b)\n", "RC=10 #in k\u03a9\n", "RC=RC*10**3 #in \u03a9\n", "Rsig= 5+5 # in k\u03a9\n", "VoltageGain1= R_id/(Rsig+R_id) #voltage gain from the signal source to the base of Q1 and Q2 in V/V\n", "VoltageGain2= 2*RC/(2*(re1+RE)) # voltage gain from the bases to the output in V/V\n", "Ad= VoltageGain1*VoltageGain2 #in V/V\n", "print \"(b) The overall differential voltage gain = %0.1f V/V\" %Ad\n", "\n", "# Part (c)\n", "delta_RC= 0.02*RC \n", "R_EE= 200 #in k\u03a9\n", "R_EE=R_EE*10**3 #in \u03a9\n", "Acm= RC/(2*R_EE)*delta_RC/RC #in V/V\n", "print \"(c) Common mode gain = %0.e V/V\" %Acm\n", "\n", "# Part (d)\n", "CMRRindB= 20*log10(Ad/Acm) # in dB\n", "print \"(d) CMRR = %.f dB\" %CMRRindB\n", "\n", "# Part (e)\n", "V_A= 100 # in V\n", "r_o= V_A/(IE) # in \u03a9\n", "# Ricm= (Beta+1)*(R_EE || r_o/2)\n", "Ricm= (Beta+1)*(R_EE*(r_o/2)/(R_EE+(r_o/2))) \n", "print \"(e) Input common mode resistance = %0.1f M\u03a9\" %(Ricm*10**-6)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The input differential resistance = 40.0 k\u03a9\n", "(b) The overall differential voltage gain = 40.0 V/V\n", "(c) Common mode gain = 5e-04 V/V\n", "(d) CMRR = 98 dB\n", "(e) Input common mode resistance = 6.7 M\u03a9\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.10 - page 347" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "delta_RDbyRD= 2/100 \n", "delta_WLbyWL= 2/100 \n", "delta_Vt= 2 #in mV\n", "delta_Vt= delta_Vt*10**-3 # in V\n", "#(From Exa 4.4)\n", "V_A= 20 # in V\n", "R_D= 5 # in k\u03a9\n", "R_D= R_D*10**3 # in \u03a9\n", "I= 0.8 # in mA\n", "I=I*10**-3 # in A\n", "i_D= I/2 # in A\n", "unCox= 0.2 # mA/V**2\n", "unCox= unCox*10**-3 # in A/V**2\n", "WbyL= 100 \n", "# Formula i_D= 1/2*unCox*WbyL*V_OV**2\n", "V_OV= sqrt(2*i_D/(unCox*WbyL)) # in V\n", "V_OS1= V_OV/2*delta_RDbyRD # in V\n", "\n", "# V_OS due to W/L ratio\n", "V_OS2= V_OV/2*delta_WLbyWL # in V\n", "\n", "# V_OS due to threshold voltage\n", "V_OS3= delta_Vt # in V\n", "# Total offset voltage\n", "V_OS= sqrt(V_OS1**2+V_OS2**2+V_OS3**2) # in V\n", "V_OS= V_OS*10**3 # in mV\n", "print \"Total offset voltage = %0.1f mV\" %V_OS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total offset voltage = 3.5 mV\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.11 - page 348" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "WLn= 100 \n", "WLp= 200 \n", "unCox= 0.2 # mA/V**2\n", "unCox=unCox*10**-3 #in A/V**2\n", "RSS= 25 # in k\u03a9\n", "RSS= RSS*10**3 # in \u03a9\n", "I=0.8 # in mA\n", "I=I*10**-3 #in A\n", "V_A= 20 # in V\n", "i_D= I/2 # in A\n", "# Formula i_D= 1/2*unCox*WLn*V_OV**2\n", "V_OV= sqrt(2*i_D/(unCox*WLn)) # in V\n", "gm= I/V_OV # in A/V\n", "print \"Value of Gm = %0.1f mA/V\" %(gm*10**3)\n", "ro2= V_A/(I/2) # in ohm\n", "ro4= ro2 # in ohm\n", "Ro= ro2*ro4/(ro2+ro4) # in ohm\n", "print \"Value of Ro = %0.1f k\u03a9\" %(Ro*10**-3)\n", "Ad= gm*Ro # in V/V\n", "print \"Value of Ad = %0.1f V/V\" %Ad\n", "# Finding the value of gm3\n", "upCox= 0.1 # mA/V**2\n", "upCox=upCox*10**-3 #in A/V**2\n", "# Formula i_D= 1/2*upCox*WLp*V_OV**2\n", "V_OV= sqrt(2*i_D/(upCox*WLp)) # in V\n", "gm3= I/V_OV # in A/V\n", "Acm= 1/(2*gm3*RSS) #in V/V\n", "print \"Value of |Acm| = %0.3f V/V\" %(abs(Acm))\n", "CMRRindB= 20*log10(abs(Ad)/abs(Acm)) #in dB\n", "print \"CMRR = %0.f dB\" %(round(CMRRindB))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of Gm = 4.0 mA/V\n", "Value of Ro = 25.0 k\u03a9\n", "Value of Ad = 100.0 V/V\n", "Value of |Acm| = 0.005 V/V\n", "CMRR = 86 dB\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.12 - page 349" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "I=0.8 # in mA\n", "I=I*10**-3 #in A\n", "V_A= 100 # in V\n", "Beta=160 \n", "VT=25 # in mV\n", "VT= VT*10**-3 #in V\n", "gm= (I/2)/VT # in A/V\n", "Gm= gm # Short circuit trnsconductance in mA/V\n", "print \"The value of Gm = %0.1f mA/V\" %(Gm*10**3)\n", "ro2= V_A/(I/2) # in ohm\n", "ro4= ro2 # in ohm\n", "Ro= ro2*ro4/(ro2+ro4) # in ohm\n", "print \"The value of Ro = %0.1f k\u03a9\" %(Ro*10**-3)\n", "Ad= Gm*Ro # in V/V\n", "print \"Value of Ad = %0.1f V/V\" %Ad\n", "r_pi= Beta/gm #in \u03a9\n", "Rid= 2*r_pi # in \u03a9\n", "print \"The value of Rid = %0.1f k\u03a9\" %(Rid*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Gm = 16.0 mA/V\n", "The value of Ro = 125.0 k\u03a9\n", "Value of Ad = 2000.0 V/V\n", "The value of Rid = 20.0 k\u03a9\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.13 - page 349" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "Vtp= -0.8 # in V\n", "KpWL= 3.5 # in mA/V**2\n", "I=0.7 # in mA\n", "I=I*10**-3 # in A\n", "R_D= 2 # in k\u03a9\n", "R_D=R_D*10**3 # in \u03a9\n", "KpWL=KpWL*10**-3 #in A/V**2\n", "v_G1= 0 # in V\n", "v_G2=v_G1 # in V\n", "VSS= 2.5 # in V\n", "VDD=VSS # in V\n", "VCS= 0.5 # in V\n", "print \"Part (a)\"\n", "V_OV= -sqrt(I/KpWL) # in V\n", "print \"The value of V_OV = %0.2f Volts\" %V_OV\n", "V_GS= V_OV+Vtp # in V\n", "print \"The value of V_GS = %0.2f Volts\" %V_GS\n", "V_G= 0 # as gate is connected ground\n", "v_S1= V_G-V_GS # in V\n", "v_S2= v_S1 # in V\n", "print \"The value of v_S1 = %0.2f Volts\" %v_S1\n", "v_D1= I/2*R_D-VDD # in V\n", "v_D2=v_D1 # in V\n", "print \"The value of v_D1 = %0.1f Volts\" %v_D1\n", "print \"The value of v_D2 = %0.1f Volts\" %v_D2\n", "\n", "print \"Part (b)\"\n", "V_CMmin= I*R_D/2-VDD+Vtp # in V\n", "V_CMmax= VSS-VCS+Vtp+V_OV # in V\n", "print \"The value of V_CMmin = %0.1f Volts\" %V_CMmin\n", "print \"The value of V_CMmax = %0.2f Volts\" %V_CMmax" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (a)\n", "The value of V_OV = -0.45 Volts\n", "The value of V_GS = -1.25 Volts\n", "The value of v_S1 = 1.25 Volts\n", "The value of v_D1 = -1.8 Volts\n", "The value of v_D2 = -1.8 Volts\n", "Part (b)\n", "The value of V_CMmin = -2.6 Volts\n", "The value of V_CMmax = 0.75 Volts\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.14 - page 351" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "V_OV= 0.2 # in V\n", "gm=1 # in mA/V\n", "gm=gm*10**-3 # in A/V\n", "Vt=0.8 # in V\n", "unCox= 90 # in \u00b5A/V**2\n", "unCox=unCox*10**-6 # in A/V**2\n", "# gm= I/V_OV\n", "I= gm*V_OV # in A\n", "print \"Bias current = %0.1f mA\" %(I*10**3)\n", "I_D= I/2 # in A\n", "# Formula I_D= 1/2*unCox*WLn*V_OV**2\n", "WbyL= 2*I_D/(unCox*V_OV**2) \n", "print \"W/L ratio is %0.1f \"%WbyL" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Bias current = 0.2 mA\n", "W/L ratio is 55.6 \n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.15 - page 351" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "I=0.5 # in mA\n", "I=I*10**-3 # in A\n", "WbyL= 50 \n", "unCox= 250 # in \u00b5A/V**2\n", "unCox=unCox*10**-6 # in A/V**2\n", "V_A= 10 # in V\n", "R_D= 4 #in k\u03a9\n", "R_D= R_D*10**3 #in \u03a9\n", "V_OV= sqrt(I/(WbyL*unCox)) #in V\n", "print \"The value of V_OV = %0.2f V \" %V_OV\n", "gm= I/V_OV # in A/V\n", "print \"The value of gm = %0.2f mA/V\" %(gm*10**3)\n", "I_D=I/2 # in A\n", "ro= V_A/I_D # in \u03a9\n", "print \"The value of ro = %0.2f k\u03a9\" %(ro*10**-3)\n", "Ad= gm*(R_D*ro/(R_D+ro)) # in V/V\n", "print \"The value of Ad = %0.2f V/V \" %Ad" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of V_OV = 0.20 V \n", "The value of gm = 2.50 mA/V\n", "The value of ro = 40.00 k\u03a9\n", "The value of Ad = 9.09 V/V \n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 4.16 - page 352" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "I=1 # in mA\n", "I=I*10**-3 # in A\n", "i_C=1 # in mA\n", "i_C=i_C*10**-3 # in A\n", "V_CC= 5 # in V\n", "V_CM= -2 # in V\n", "V_BE= 0.7 # in V\n", "R_C= 3 # in k\u03a9\n", "R_C= R_C*10**3 # in \u03a9\n", "Alpha=1 \n", "Beta=100 \n", "V_B= 1 # in V\n", "i_C1= Alpha*I # in A\n", "i_C2=0 # A\n", "v_E= V_B-V_BE # in V\n", "print \"Emitters voltage = %0.2f Volt\" %v_E,\n", "v_C1= V_CC-i_C1*R_C # in V\n", "v_C2= V_CC-i_C2*R_C # in V\n", "print \"Output voltage is\",v_C1,\"V &\",v_C2,\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Emitters voltage = 0.30 Volt Output voltage is 2.0 V & 5 V\n" ] } ], "prompt_number": 19 } ], "metadata": {} } ] }