{ "metadata": { "name": "", "signature": "sha256:b5194708e2447220722c4dfa1402fc797342ce58013c4fb6e50908b3fd6172f1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2-Passive Components " ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.1\n", "import math\n", "marked=220.;##in ohms\n", "measured=207.;##in ohms\n", "err=marked-measured;\n", "tol=(err/marked)*100.;\n", "print'%s %.2f %s'%(\"Tolerance = \",tol,\"\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tolerance = 5.91 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.2\n", "import math\n", "r=39.;##in ohms\n", "v=9.;##in volts\n", "i=(v/r);##in Amps\n", "print'%s %.2f %s'%(\"Current = \",i*1000,\" mA\");\n", "tol=0.1;##i.e, 10%\n", "r_min=r-(tol*r);\n", "i_max=v/r_min;\n", "r_max=r+(tol*r);\n", "i_min=v/r_max;\n", "print'%s %.2f %s %.2f %s '%(\"\\n Max.Current = \",i_max*1000,\" mA \" and \"\",i_min*1000,\" Min Current\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current = 230.77 mA\n", "\n", " Max.Current = 256.41 209.79 Min Current \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.3\n", "import math\n", "v=28.;##in volts\n", "i=0.1;##in A\n", "r=v/i;\n", "p=v*i;\n", "print'%s %.2f %s %.2f %s '%(\"Resistance Value = \",r,\" ohms & Power dissipated\"\" = \",p,\" W\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance Value = 280.00 ohms & Power dissipated = 2.80 W \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.4\n", "import math\n", "r=10*(10**2);\n", "print'%s %.2f %s'%(\"Resistor value = \",r,\" ohm\");\n", "print(\"\\nTolerance = 10 \");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistor value = 1000.00 ohm\n", "\n", "Tolerance = 10 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.5\n", "import math\n", "r=27.*(10**3);\n", "print'%s %.2f %s'%(\"Resistor value = \",r,\" ohm\");\n", "print(\"\\nTolerance = 5 \");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistor value = 27000.00 ohm\n", "\n", "Tolerance = 5 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.6\n", "import math\n", "r=56*(10);\n", "print'%s %.2f %s'%(\"Resistor value = \",r,\" ohm\");\n", "print(\"\\nTolerance = 5 \");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistor value = 560.00 ohm\n", "\n", "Tolerance = 5 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.7\n", "import math\n", "r=25.*(10**0);\n", "print'%s %.2f %s'%(\"Resistor value = \",r,\" ohm\");\n", "print(\"\\nTolerance = 20 \");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistor value = 25.00 ohm\n", "\n", "Tolerance = 20 \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.8\n", "import math\n", "r=22.*(10**3);\n", "print(\"Bands are Red, Red, Red, Red\");\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Bands are Red, Red, Red, Red\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.9\n", "import math\n", "print(\"Resistance = 4.7 ohm with 10%% tolerance\");\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance = 4.7 ohm with 10%% tolerance\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.10\n", "import math\n", "print(\"Resistance = 330 ohms with 2%% tolerance\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance = 330 ohms with 2%% tolerance\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.11\n", "import math\n", "print(\"Resistance = 0.22 ohm with 20%% tolerance\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance = 0.22 ohm with 20%% tolerance\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.12\n", "import math\n", "r1=22.;##in ohms\n", "r2=47.;##in ohms\n", "r3=33.;##in ohms\n", "r_ser=r1+r2+r3;\n", "print'%s %.2f %s'%(\"Effective resistance in series = \",r_ser,\" ohms\");\n", "r_parel=((1./r1)+(1./r2)+(1./r3))**-1;\n", "print'%s %.2f %s'%(\"\\n Effective resistance in parallel = \",r_parel,\" ohms\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Effective resistance in series = 102.00 ohms\n", "\n", " Effective resistance in parallel = 10.31 ohms\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.13\n", "import math\n", "r1=4.7;##in ohms\n", "r2=47.;##in ohms\n", "r3=12.;##in ohms\n", "r4=27.;##in ohms\n", "r5=r3+r4;\n", "r_parel=((1./r5)+(1./r2))**-1;\n", "r_eff=r_parel+r1;\n", "print'%s %.2f %s'%(\"Effective resistance = \",r_eff,\" ohms\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Effective resistance = 26.01 ohms\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex14-pg27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.14\n", "import math\n", "print(\"Two 100 ohm resistor of 1 W\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Two 100 ohm resistor of 1 W\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex15-pg28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.15\n", "import math\n", "temp_coeff=0.001;##in per degree centigrade\n", "r_o=1500.;##in ohm\n", "t=80.;##temperature diff.\n", "r_t=r_o*(1.+(temp_coeff)*t)\n", "print'%s %.2f %s'%(\"Resistance at \",r_t,\" degree = ohms\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance at 1620.00 degree = ohms\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16-pg28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.16\n", "import math\n", "temp_coeff=0.0005;##in per degree centigrade\n", "r_t1=680.;##in ohm\n", "t1=20.;##temperature diff.\n", "t2=90.;\n", "r_o=r_t1/(1.+(temp_coeff)*t1);\n", "r_t2=r_o*(1.+(temp_coeff)*t2);\n", "print'%s %.2f %s %.2f %s '%(\"Resistance at \",t2,\" degree = \",r_t2,\" ohms\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance at 90.00 degree = 703.56 ohms \n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex17-pg29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.17\n", "import math\n", "r_o=40.;##resis at 0 degree\n", "r_t=44.;##at 100 degree\n", "t=100.;##temperature diff.\n", "temp_coeff=(1./t)*((r_t/r_o)-1.);\n", "print'%s %.2e %s'%(\"Temperature Coefficient = \",temp_coeff,\" per degree centigrade\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Temperature Coefficient = 1.00e-03 per degree centigrade\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex18-pg33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.18\n", "import math\n", "V_1=50.;\n", "V_2=10.;\n", "dV=V_1-V_2;##in volts\n", "dt=0.1;##in seconds\n", "C=22.*10**-6;\n", "i=C*(dV/dt)*1000.;##in mA\n", "print'%s %.2f %s'%(\"Current flow = \",i,\" milliAmps\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current flow = 8.80 milliAmps\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex19-pg33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.19\n", "import math\n", "C=10.*10**-6;\n", "V=250.;##in volts\n", "Q=V*C*1000.;##in millicoulomb\n", "print'%s %.2f %s'%(\"Charged stored =\",Q,\" mC\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Charged stored = 2.50 mC\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex20-pg33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.20\n", "import math\n", "C=47.*10**-6;##in farads\n", "W=4.;##energy in joules\n", "V=math.sqrt(W/(0.5*C));\n", "print'%s %.2f %s'%(\"Voltage tht be applied = \",V,\" volts\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage tht be applied = 412.57 volts\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex21-pg34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.21\n", "import math\n", "E_o=8.85*10**-12;\n", "E_r=5.4;\n", "C=1*10**-9;\n", "d=0.1*10**-3;\n", "A=(C*d)/(E_o*E_r)*10**4;\n", "print'%s %.2f %s'%(\"Required plate area = \",A,\" sq. cm\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Required plate area = 20.92 sq. cm\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex22-pg34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.22\n", "import math\n", "E_o=8.85*10**-12;\n", "E_r=4.5;\n", "n=6.;##no. of plates\n", "d=0.2*10**-3;##in meter\n", "A=20.*10**-4;##in sq.meter\n", "C=((E_o*E_r*(n-1.)*A)/d)*10**11;\n", "print'%s %.2f %s'%(\"Capacitance = \",C,\" pF\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance = 199.12 pF\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex23-pg36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.23\n", "import math\n", "print(\"Capacitance = 10000 pF of 10%%\"); " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance = 10000 pF of 10%%\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex24-pg36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.24\n", "import math\n", "print(\"Capacitance = 150 pF of 2%% tolerance at 100 V\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance = 150 pF of 2%% tolerance at 100 V\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex25-pg37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.25\n", "import math\n", "C1=2.;##in nF\n", "C2=4.;##in nF\n", "C3=2.;\n", "C4=4.;\n", "C_a=C1+C2;\n", "C_b=C_a*C3/(C_a+C3);\n", "C_eff=C4+C_b;\n", "print'%s %.2f %s'%(\"Capacitance = \",C_eff,\" nF\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance = 5.50 nF\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex26-pg37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.26\n", "import math\n", "C=100.;##in uF\n", "C_eff=C*C/(C+C);\n", "print'%s %.2f %s'%(\"Two capacitors of uF be in parallel used to make \",C_eff,\" uF capacitance\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Two capacitors of uF be in parallel used to make 50.00 uF capacitance\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex27-pg40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.27\n", "import math\n", "L=600.*10**-3;##in H\n", "I1=6.;##in A\n", "I2=2.;##in A\n", "dI=I1-I2;\n", "dt=250.*10**-3;##in sec.\n", "E=-L*(dI/dt);\n", "print'%s %.2f %s'%(\"Induced voltage = \",E,\" volts\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Induced voltage = -9.60 volts\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex28-pg40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.28\n", "import math\n", "E=2.5;##energy in joules\n", "L=20.*10**-3;##in henry\n", "I=math.sqrt(E/(0.5*L));\n", "print'%s %.2f %s'%(\"Current = \",I,\" A\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current = 15.81 A\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex29-pg40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.29\n", "import math\n", "u_o=12.57*10**-7;\n", "u_r=500.;\n", "A=15.*10**-4;##area of cross-section in sq. meters\n", "l=20.*10**-2;##length\n", "L=100.*10**-3;##in henry\n", "n=math.sqrt((L*l)/(u_r*u_o*A));\n", "print'%s %.2f %s'%(\"Inductor requires \",n,\" turns of wire\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Inductor requires 145.65 turns of wire\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex30-pg42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.30\n", "import math\n", "##L=(L1*L2)/(L1+L2)\n", "L_eq=5.;##in millihenry\n", "print'%s %.2f %s'%(\"Inductor of 10 mH wired in parallel would provide \",L_eq,\" mH\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Inductor of 10 mH wired in parallel would provide 5.00 mH\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex31-pg42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:2.31\n", "import math\n", "L1=60.;##in mH\n", "L2=60.;##in mH\n", "L_a=L1+L2;\n", "L3=120.;##in mH\n", "L_b=L_a*L3/(L_a+L3);\n", "L4=50.;##in mH\n", "L_eq=L4+L_b;\n", "print'%s %.2f %s'%(\"Equivalent Inductance = \",L_eq,\" mH\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Equivalent Inductance = 110.00 mH\n" ] } ], "prompt_number": 32 } ], "metadata": {} } ] }