{ "metadata": { "name": "", "signature": "sha256:b9799d17ce9c5e8acfde2941052198091704f3207bfb93e90879b4a048464a60" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter1-Electrical Fundamentals" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg3" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa:1.4\n", "import math\n", "ang_d=215.;##given\n", "ang_r=ang_d*math.pi/180.;\n", "print'%s %.2f %s %.2f %s '%(\"%f degree angle is \",ang_d,\" radians\" and \"\",ang_r,\"\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "%f degree angle is 215.00 3.75 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg3" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa:1.5\n", "import math\n", "ang_r=2.5;##given\n", "ang_d=2.5*180./math.pi;##angle in degrees\n", "print'%s %.2f %s %.2f %s '%(\"%f degree angle is \",ang_d,\" radians\" and \"\",ang_r,\"\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "%f degree angle is 143.24 2.50 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg4" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa:1.6\n", "import math\n", "i_amp=0.075;##given\n", "i_milamp=i_amp*1000.;##current in milliamp.\n", "print'%s %.2f %s'%(\"%f amp current is \",i_milamp,\" mA\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "%f amp current is 75.00 mA\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg4" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa:1.7\n", "import math\n", "fq_khz=1495.;##given\n", "fq_Mhz=fq_khz/1000.;\n", "print'%s %.2f %s'%(\" kHz frequency is \",fq_Mhz,\" MHz\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " kHz frequency is 1.50 MHz\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg4" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa:1.8\n", "import math\n", "c_pF=27000.;##given\n", "c_uF=c_pF/1000.;\n", "print'%s %.2f %s'%(\"picofarad capacitance is \",c_uF,\" microfarad\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "picofarad capacitance is 27.00 microfarad\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg4" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa:1.9\n", "import math\n", "c_mA=7.25;##given\n", "c_A=c_mA*1000.;\n", "print'%s %.2f %s'%(\" milliampere current is \",c_A,\" ampere\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " milliampere current is 7250.00 ampere\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg4" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa:1.10\n", "import math\n", "vg_v=3.75*10**-6;##given\n", "vg_mv=vg_v*1000.;\n", "print'%s %.2e %s'%(\" volt voltage is \",vg_mv,\" mV\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " volt voltage is 3.75e-03 mV\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.11\n", "import math\n", "r=33000.;##in ohms\n", "i=0.003;##in amp\n", "v=i*r;\n", "print'%s %.2f %s'%(\"Voltage dropped = \",v,\" volts\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage dropped = 99.00 volts\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.12\n", "import math\n", "t=20.*10**-3;##in sec\n", "i=45.*10**-6;##in amp\n", "q=i*t*10**9;\n", "print'%s %.2f %s'%(\"Charge transferred = \",q,\" nC\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Charge transferred = 900.00 nC\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.13\n", "import math\n", "p=0.3;##in watts\n", "v=1500.;##in volts\n", "i=(p/v)*10**6;\n", "print'%s %.2f %s'%(\"Current supplied = \",i,\" microamp\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current supplied = 200.00 microamp\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex14-pg7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.14\n", "import math\n", "r=12.;##in ohms\n", "v=6.;##in volts\n", "i=(v/r);\n", "print'%s %.2f %s'%(\"Current = \",i,\" Amp\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current = 0.50 Amp\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex15-pg7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.15\n", "import math\n", "r=56.;##in ohms\n", "i=0.1;##in amp\n", "v=i*r;\n", "print'%s %.2f %s'%(\"Voltage dropped = \",v,\" volts\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage dropped = 5.60 volts\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16-pg7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.16\n", "import math\n", "v=15.;##in volts\n", "i=0.001;##in amp\n", "r=v/i;\n", "print'%s %.2f %s'%(\"Resistance = \",r,\" ohms\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance = 15000.00 ohms\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex17-pg7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.17\n", "import math\n", "p=1.724*10**-8;##in ohm-meter\n", "l=8.;##in meters\n", "a=1.*10**-6;##in sq. meter\n", "r=(p*l)/a;\n", "print'%s %.2f %s'%(\"Resistance = \",r,\" ohms\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance = 0.14 ohms\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex18-pg8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.18\n", "import math\n", "p=1.724*10**-8;##in ohm-meter\n", "l=20.;##in meters\n", "a=1.*10**-6;##in sq. meter\n", "i=5.;##in amperes\n", "r=(p*l)/a;\n", "v=i*r;\n", "print'%s %.2f %s'%(\"Voltage dropped = \",v,\" volts\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage dropped = 1.72 volts\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex19-pg9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.19\n", "import math\n", "v=3.;##in volts\n", "i=1.5;##in amperes\n", "p=v*i;\n", "print'%s %.2f %s'%(\"Power supplied = \",p,\" watts\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power supplied = 4.50 watts\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex20-pg9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.20\n", "import math\n", "v=4.;##in volts\n", "r=100.;##in ohms\n", "p=(v**2)/r;\n", "print'%s %.2f %s'%(\"Power dissipated = \",p,\" watts\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power dissipated = 0.16 watts\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex21-pg9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.21\n", "import math\n", "i=20.*10**-3;##in amps\n", "r=1000.;##in ohms\n", "p=(i**2)*r;\n", "print'%s %.2f %s'%(\"Power dissipated = \",p,\" watts\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power dissipated = 0.40 watts\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex22-pg10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.22\n", "import math\n", "v=600;##in volts\n", "d=25*10^-3;##in meters\n", "E=(v)/d;\n", "print'%s %.2f %s'%(\"Electric Field Strength = \",E/10000,\" kV/m\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electric Field Strength = -1.00 kV/m\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex23-pg13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.23\n", "import math\n", "u=4.*math.pi*10**-7;##in H/m\n", "i=20.;##in amps\n", "d=50.*10**-3;##in meters\n", "B=(u*i)/(2.*math.pi*d);\n", "print'%s %.2e %s'%(\"Flux Density = \",B,\" Tesla\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Flux Density = 8.00e-05 Tesla\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex24-pg13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.24\n", "import math\n", "B=(2.5*10**-3);##in Tesla\n", "a=(20.*10**-4);##in sq. meter\n", "flux=B*a;\n", "print'%s %.2e %s'%(\"Flux = \",flux,\" webers\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Flux = 5.00e-06 webers\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex25-pg15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.25\n", "import math\n", "B1=0.6;##in Tesla\n", "u1=B1/800.;\n", "u_r1=u1/(4.*math.pi*10**-7);\n", "print'%s %.2f %s'%(\"reltive permitivity at 0.6T = \",u_r1,\"\");\n", "B2=1.6;##in Tesla\n", "u2=0.2/4000.;\n", "u_r2=u2 /(4.*math.pi*10**-7);\n", "print'%s %.2f %s'%(\"\\n reltive permitivity at 1.6T = \",u_r2,\"\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "reltive permitivity at 0.6T = 596.83 \n", "\n", " reltive permitivity at 1.6T = 39.79 \n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex26-pg16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex:1.26\n", "import math\n", "flux=0.8*10**-3;\n", "a=(500.*10**-6);##in sq. meter\n", "l=0.6;##in meter\n", "N=800.;\n", "B=flux/a;\n", "print'%s %.2e %s'%(\"Flux Density = \",B,\" Tesla\");\n", "H=3500.;##in A/m\n", "i=(H*l)/N;\n", "print'%s %.2f %s'%(\"\\n Current required = \",i,\" amp.s\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Flux Density = 1.60e+00 Tesla\n", "\n", " Current required = 2.62 amp.s\n" ] } ], "prompt_number": 25 } ], "metadata": {} } ] }