{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 22 : Power System Voltage Stability" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22.2, Page No 725" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vb=500.0\n", "Sb=1000.0\n", "\n", "#Calculations\n", "Zb=Vb**2/Sb\n", "Xpu=.35*100/Zb\n", "Zth=1000/5000.0\n", "X=Xpu+Zth\n", "V=1.0\n", "Q=0\n", "P=1.0\n", "Eth=V+(Q*X/V)+complex(P*X/V)\n", "Q=0.75\n", "Eth1=V+(Q*X/V)+complex(P*X/V)\n", "\n", "#Results\n", "print(\"(i) For p.f unity , Eth= {0:.5f}+{1:.5f}i\".format(Eth.real, Eth.imag))\n", "print(\"(i) For p.f .8 , Eth= {0:.5f}+{1:.5f}i\".format(Eth1.real, Eth1.imag))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) For p.f unity , Eth= 1.34000+0.00000i\n", "(i) For p.f .8 , Eth= 1.59500+0.00000i\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22.3, Page No 726" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "X=.625\n", "P=1.0\n", "Q=0.6\n", "V=1.0\n", "\n", "#Calculations\n", "Eth=V+(Q*X/V)+complex(P*X/V)\n", "Phase_Eth=math.degrees(math.atan(Eth.imag/Eth.real))\n", "\n", "#Results\n", "print(\"Eth=%.2f at an angle %.0f degrees\" %(abs(Eth),Phase_Eth))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Eth=2.00 at an angle 0 degrees\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22.4, Page No 732" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "P=0.5\n", "toff=4.0\n", "\n", "#Calculations\n", "ton=(P*toff-0*toff)/(0.8-P)\n", "\n", "#Results\n", "print(\"Toff= 4min .\")\n", "print(\"ton(min.)=%.3f min.\" %ton)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Toff= 4min .\n", "ton(min.)=6.667 min.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22.6 Page No 739" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V=1.0\n", "Qload=1.0*V\n", "Qcap=-0.75*V**2\n", "\n", "#Calculations\n", "Qnet=Qload+Qcap\n", "VS=1-0.75*2*V # voltage sensitivity\n", "\n", "#Results\n", "print(\"Voltage sensitivity=%.3f\" %VS)\n", "print(\"since the voltage sensitivity is negative,\\nvoltage regulation by tap changing will reduce net reactive load and improive voltage stability \")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage sensitivity=-0.500\n", "since the voltage sensitivity is negative,\n", "voltage regulation by tap changing will reduce net reactive load and improive voltage stability \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22.7, Page No 740" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Y=complex(-10)\n", "n=1+0.1\n", "\n", "#Calculations\n", "Y1=n*(n-1)*Y\n", "Y2=(1-n)*Y\n", "\n", "#Results\n", "print(\"Y1= {0:.2f}+{1:.2f}i\".format(Y1.real, Y1.imag))\n", "print(\"Y2= {0:.2f}+{1:.2f}i\".format(Y2.real, Y2.imag))\n", "print(\"The shunt elements equal to a reactor of 1.1V1^2 size oin the primary side and a capacitive of sixe 1V2**2 on the secondary side\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Y1= -1.10+0.00i\n", "Y2= 1.00+-0.00i\n", "The shunt elements equal to a reactor of 1.1V1^2 size oin the primary side and a capacitive of sixe 1V2**2 on the secondary side\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22.8, Page No 745" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "P=1.0\t\t#assuming\n", "S1=P/.95\t#For pf .95\n", "S2=P/.8\t\t#For pf .8\n", "\n", "#Calculations\n", "dMVA=(S2-S1)*100.0/P\t\t#Increase in MVA rating \n", "Q1=P*math.tan(math.radians(math.degrees(math.acos(0.95))))\t\t#Q for pf .95\n", "Q2=P*math.tan(math.radians(math.degrees(math.acos(0.8))))\t\t#Q for pf .8\n", "dPc=(Q2-Q1)*100.0/Q1\t\t#Percent additional Reactive Power Capability \n", "\n", "#Results\n", "print(\"Percent additional Reactive Power Capability is %.2f\" %dPc)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percent additional Reactive Power Capability is 128.18\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }