{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 21 : Compensation In Power Systems" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21.1, Page No 683" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy\n", "#initialisation of variables\n", "\n", "load1=complex(10,15)\t\t#load per phase(MVA)\n", "SCC=250.0/3\n", "V=11/math.sqrt(3)\n", "P=30\n", "Q=45\n", "Z=(11/math.sqrt(3))**2.0/(250.0/3)\t#Equivalent short circuit impedence\n", "\n", "#Calculations\n", "dsc=math.degrees(math.atan(5))\n", "R=.0949\n", "X=.4746\n", "#Using equation: V**2= (Vcosd+PR/V)**2 + (Vsind+QX/V)**2, we get \n", "y=numpy.polynomial.polynomial.polyval3d(51.7,0,-27.5,1)\n", "X=numpy.roots(y)\n", "V=5.046\n", "print(\"V=%.3f\" %V)\n", "dV=6.35-V\n", "Ssc=250\n", "#using expression ,a=dV/v=1(Pcos(dsc)+Qsin(dsc))/Ssc +j(Psin(dsc)-Qcos(dsc))/Ssc\n", "\n", "a=(P*math.cos(math.radians(dsc))+Q*math.sin(math.radians(dsc)))/Ssc +complex(P*math.sin(math.radians(dsc))-Q*math.cos(math.radians(dsc)))/Ssc\n", "\n", "#Results\n", "print(\"dV/V= %.2f \" %abs(a))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "V=5.046\n", "dV/V= 0.28 \n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }