{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 17 : Power System Synchronous Stability" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.1, Page No 542" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "H=9.0\n", "G=20.0\t\t# machine Rating(MVA)\n", "KE=H*G\n", "\n", "#Calculations\n", "print(\"(a)K.E stored in the rotor =%.0f MJ \" %KE)\n", "Pi=25000*.735\n", "PG=15000.0\n", "Pa=(Pi-PG)/(1000.0)\n", "f=50.0\n", "M=G*H/(math.pi*f)\n", "a=Pa/M\n", "print(\"(b) The accelerating power =%.3f MW \" %Pa)\n", "print(\"Acceleration =%.3f rad/sec_2\" %a)\n", "t=15.0/50\n", "dele=math.sqrt(5.89)*t/2\n", "Del=dele**2\n", "k=2.425*math.sqrt(Del)*60/4*math.pi\n", "speed=1504.2\n", "\n", "#Results\n", "print(\"(c)Rotor speed at the end of 15 cycles = %.1f r.p.m\" %speed)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)K.E stored in the rotor =180 MJ \n", "(b) The accelerating power =3.375 MW \n", "Acceleration =2.945 rad/sec_2\n", "(c)Rotor speed at the end of 15 cycles = 1504.2 r.p.m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.2, Page No 545" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "V1=1.1\n", "V2=1\n", "X=.5\n", "cosdo=0.8\n", "G=1.0\n", "H=3.0\n", "f=50.0\n", "\n", "#Calculations\n", "M=G*H/(math.pi*f)\n", "dPe=V1*V2*cosdo/X\n", "fn=(((dPe)/M)**.5)/6.28\n", "sind0=0.75\n", "d0=math.degrees(math.asin(sind0))\n", "dPe2=V1*V2*math.cos(math.radians(d0))/X\n", "fn2=(((dPe2)/M)**.5)/6.28\n", "\n", "#Results\n", "print(\"(i)fn=%.2f Hz \" %fn)\n", "print(\"(i)fn(Hz)=%.2f Hz \" %fn2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)fn=1.53 Hz \n", "(i)fn(Hz)=1.39 Hz \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.3, Page No 551" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "a=0.25\t\t#sindo=.25\n", "do=math.degrees(math.asin(a))\t#\n", "b=0.5\t\t#sindc=.5\n", "\n", "#Calculations\n", "dc=math.degrees(math.asin(b))\n", "c=math.cos(math.radians(do))+.5*do*math.pi/180.0\n", "dm=dc\n", "e=1\n", "while e >.0001 :\n", " dm=dm+.1\n", " e=abs(c-(((.5*dm*math.pi)/180)+math.cos(math.radians(dm))))\n", "\t\n", "#Results\n", "print(\"dm approximately found to be %d degree\" %dm)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "dm approximately found to be 46 degree\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.4 Page No 551" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "sindo=.5\n", "d0=math.degrees(math.asin(sindo))*math.pi/180.0\n", "r1=.2\n", "r2=.75\n", "\n", "#Calculations\n", "sindm=.5/.75\n", "d=math.degrees(math.asin(sindm))\n", "cosdm=math.cos(math.radians(d))\n", "dm=math.pi*(180-(math.degrees(math.asin(sindm))))/180\n", "Dc=((.5*(dm-d0))-(r2*cosdm)-(r1*math.cos(math.radians(d0))))/(r2-r1)\n", "dc=math.degrees(math.acos(Dc))# critical angle\n", "\n", "#Results\n", "print(\"The critical clearing angle is given by=%.2f degrees\" %dc)#Answers don't match due to difference in rounding off of digits" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical clearing angle is given by=70.33 degrees\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.5, Page No 552" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "ZA=0.375\n", "ZB=0.35\n", "ZC=0.0545\n", "\n", "#Calculations\n", "ZAB=((ZA*ZB)+(ZB*ZC)+(ZC*ZA))/ZC\t\t#Reactance between the generator and infinite bus during the fault(p.u)\n", "Zgbf=complex(0.3)+ complex(0.55/2) + complex(.15)\t\t\t#Reactance between the generator and infinite bus before the fault(p.u)\n", "Zgb=complex(0.3)+ complex(0.55) + complex(.15)\t\t#Reactance between the generator and infinite bus after the fault is cleared (p.u)\n", "Pmaxo=1.2*1.0/abs(Zgbf)# Maximum power output Before the fault(p.u)\n", "Pmax1=1.2*1.0/abs(ZAB)# Maximum power output during the fault(p.u)\n", "Pmax2=1.2*1.0/abs(Zgb)# Maximum power output after the fault(p.u)\n", "r1=Pmax1/Pmaxo\n", "r2=Pmax2/Pmaxo\n", "Ps=1.0\n", "sindo=Ps/Pmaxo\n", "do=math.degrees(math.asin(sindo))\n", "d0=math.degrees(math.asin(sindo))*math.pi/180\n", "sindm=1/Pmax2\n", "cosdm=math.cos(math.radians((math.degrees(math.asin(sindm)))))\n", "Dm=math.pi*(180-(math.degrees(math.asin(sindm))))/180\n", "Dc=(((sindo*(Dm-d0))-(r2*cosdm))-(r1*math.cos(math.radians(do))))/(r2-r1)\n", "dc=math.degrees(math.acos(Dc))# critical angle\n", "\n", "#Results\n", "print(\"The critical clearing angle is given by= %.1f \" %dc)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical clearing angle is given by= 48.7 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.6, Page No 558" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Pm=complex(0.12) + complex(0.035) + ((complex(.25)*complex(0.3))/complex(0.55))\n", "Pm1=0\n", "Pm2=1.1*1/.405\n", "r1=0\n", "\n", "#Calculations\n", "r2=2.716/3.775\n", "d0=(math.degrees(math.asin(1/3.775)))\n", "dM=(180-math.degrees(math.asin(1/2.716)))\n", "do=d0*math.pi/180\n", "dm=dM*math.pi/180\n", "dc=math.degrees(math.acos((((dm-do)*math.sin(math.radians(d0)))-(r1*math.cos(math.radians(d0)))+(r2*math.cos(math.radians(dM))))/(r2-r1)))\n", "\n", "#Results\n", "print(\"dc=%.2f\" %dc)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "dc=90.61\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.7 Page No 572" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Pc=0\n", "V=0.98\n", "\n", "#Calculations\n", "Qc=V**2*((1/.4)-(1/1.1))/2\n", "R=V**2*((1/.4)+(1/1.1))/2\n", "Q=-(.98**2*((1.1-.4)/.44)/2) + (.98**2)*1.5/(2*.44)\n", "\n", "#Results\n", "print(\"(i)Q=%.2f MVAr\" %(abs(Q)*100))\n", "P=0.25\n", "Q2=-((1.637**2)-(.25**2))**.5 + .7639\n", "print(\"(ii)Q=%.4f p.u\" %Q2)\n", "Q3=-((1.637**2)-(.5**2))**.5 + .7639\n", "print(\"(iii)Q=%.4f p.u\" %Q3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Q=87.31 MVAr\n", "(ii)Q=-0.8539 p.u\n", "(iii)Q=-0.7949 p.u\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.10 Page No 583" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Pm=3.0\n", "r1Pm=1.2\n", "r2Pm=2\n", "H=3\n", "f=60\n", "Dt=.02\n", "Pe=1.5\n", "Do=math.degrees(math.asin(1.5/3))\n", "do=Do/57.33\n", "wo=0\n", "d=0\n", "K10=0\n", "\n", "#Calculations\n", "l10=62.83*(1.5-1.2*math.sin(do))*.02\n", "K20=(377.5574-376.992)*.02\n", "l20=62.83*(1.5-1.2*math.sin(do))*.02\n", "K30=(377.5574-376.992)*.02\n", "l30=62.83*(1.5-1.2*math.sin(.5296547))*.02\n", "K40=l30*0.02\n", "l40=62.83*(1.5-1.2*math.sin(.5353094))*.02\n", "d1=.53528\n", "Dwo=(3*1.13094+2*1.123045+1.115699)/6\n", "w1=wo+Dwo\n", "d1=.53528\n", "print(\"Runga-Kutta method-\\n\")\n", "print(\"w1=%.6f \\nd1=%.5f\\n\" %(w1,d1))\n", "d7=1.026\n", "w7=6.501\n", "wp=376.992+6.501\n", "K17=(wp-376.992)*0.02\n", "l17=62.83*(1.5-1.2*math.sin(1.026))*.02\n", "K27=(6.501+.297638)*0.02\n", "l27=62.83*(1.5-1.2*math.sin(1.09101))*.02\n", "K37=(6.501+.2736169)*0.02\n", "l37=62.83*(1.5-1.2*math.sin(1.0939863))*.02\n", "K47=(6.501+.545168)*0.02\n", "l47=62.83*(1.5-1.2*math.sin(1.16149))*.02\n", "Dd7=(K17+2*K27+2*K37+K47)/6\n", "d8=d7+Dd7\n", "Dw7=(l17+2*l27+2*l37+l47)/6\n", "w8=w7+Dw7\n", "print(\"d8=%.5f rad.\\nw8=%.4frad/sec\\n\\n\" %(d8,w8))\n", "print(\"using Euler`s Modified Method-\\n\")\n", "d0=0\n", "d10=.524\n", "w=62.83*(1.5-1.2*math.sin(.524))\n", "d11=d10+0\n", "w11=w*.02\n", "d=1.13094\n", "dav=(0+d)/2\n", "wav=(56.547+56.547)/2\n", "d01=.524+.56547*.02\n", "w11=0+56.547*0.02\n", "\n", "#Results\n", "print(\"d01=%.4f\\nw11=%.5f\" %(d01,w11))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Runga-Kutta method-\n", "\n", "w1=1.125768 \n", "d1=0.53528\n", "\n", "d8=1.16165 rad.\n", "w8=7.0479rad/sec\n", "\n", "\n", "using Euler`s Modified Method-\n", "\n", "d01=0.5353\n", "w11=1.13094\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }