{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12 : Thyristors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.1, Page No 278" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "L=2*(10**-7)*math.log(100/.75)\t\t#inductance per unit length\n", "C=2*math.pi*(10**-9)/(36*math.pi*math.log(100.0/0.75))\t#Capacitance per phase per unit length (F/m)\n", "Z1=math.sqrt(L/C)\n", "E=11000.0\n", "\n", "#Calculations\n", "print(\"(i)the natural impedence of line=%.0f ohms\" %Z1)\n", "Il=E/(math.sqrt(3)*Z1) #line current(amps)\n", "print(\"(ii)line current =%.1f amps\" %Il)\n", "R=1000.0\n", "Z2=R\n", "E1=2*Z2*E/((Z1+Z2)*math.sqrt(3))\n", "Pr=3*E1*E1/(R*1000) #Rate of power consumption\n", "Vr=(Z2-Z1)*E/(math.sqrt(3)*(Z2+Z1)*1000)\t\t#Reflected voltage\n", "Er=3*Vr*Vr*1000/Z1\t\t\t\t\t\t\t\t#rate of reflected voltage\n", "print(\"(iii)rate of energy absorption =%.1f kW\" %Pr)\n", "print(\"rate of reflected energy =%.1f kW\" %Er)\n", "print(\"(iv)Terminating resistance should be equal to surge impedence of line =%.0f ohms\" %Z1)\n", "L=.5*(10**-8)\n", "C=10**-12\n", "Z=math.sqrt(L/C)\t\t# surge impedence\n", "VR=2*Z*11/((Z1+Z)*math.sqrt(3))\n", "Vrl=(Z-Z1)*11/((Z1+Z)*math.sqrt(3))\n", "PR1=3*VR*VR*1000/(Z)\n", "d=Vrl\n", "Prl=3*d*d*1000.0/Z1\n", "\n", "#Results\n", "print(\"(v)Refracted power =%.1f kW\" %PR1)\n", "print(\"Reflected power =%.1f kW\" %Prl)\n", "##Answer don't match exactly due to difference in rounding off of digits i between calculations\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)the natural impedence of line=294 ohms\n", "(ii)line current =21.6 amps\n", "(iii)rate of energy absorption =289.2 kW\n", "rate of reflected energy =122.9 kW\n", "(iv)Terminating resistance should be equal to surge impedence of line =294 ohms\n", "(v)Refracted power =257.9 kW\n", "Reflected power =154.3 kW\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.2, Page No 280" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Xlc=0.3*(10**-3)\t\t# inductance of cable(H)\n", "Xcc=0.4*(10**-6)\t\t# capacitance of cable (F)\n", "Xlo=1.5*(10**-3)\t\t#inductance of overhead line(H)\n", "Xco=.012*(10**-6)\t\t# capacitance of overhead line (F)\n", "\n", "#Calculations\n", "Znc=math.sqrt((Xlc/Xcc))\n", "Znl=math.sqrt((Xlo/Xco))\n", "\n", "#Results\n", "print(\"Natural impedence of cable=%.2f ohms \" %Znc)\n", "print(\"Natural impedence of overhead line=%.1f ohms \" %Znl)\n", "E=2*Znl*15/(353+27)\n", "print(\"voltage rise at the junction due to surge =%.2f kV \" %E)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Natural impedence of cable=27.39 ohms \n", "Natural impedence of overhead line=353.6 ohms \n", "voltage rise at the junction due to surge =27.91 kV \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.3, Page No 280" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Z1=600.0\n", "Z2=800.0\n", "Z3=200.0\n", "E=100.0\n", "\n", "#Calculations\n", "E1=2*E/(Z1*((1/Z1)+(1/Z2)+(1/Z3)))\n", "Iz2=E1*1000.0/Z2\n", "Iz3=E1*1000.0/Z3\n", "\n", "#Results\n", "print(\"Transmitted voltage =%.2f kV \" %E1)\n", "print(\"The transmitted current in line Z2=%.2f amps \" %Iz2)\n", "print(\"The transmitted current in line Z3=%.1f amps \" %Iz3)\n", "\n", "#Answer don't match exactly due to difference in rounding off of digits i between calculations" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Transmitted voltage =42.11 kV \n", "The transmitted current in line Z2=52.63 amps \n", "The transmitted current in line Z3=210.5 amps \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.4 Page No 283" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Z=350.0 \t#surge impedencr (ohms)\n", "\n", "#Calculations\n", "C=3000.0*(10**-12)\t# earth capacitance(F) \n", "t=2.0*(10**-6)\n", "E=500.0\n", "E1=2*E*(1-math.exp((-1*t/(Z*C))))\n", "\n", "#Results\n", "print(\"the maximum value of transmitted voltage=%.2f kV \" %E1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the maximum value of transmitted voltage=851.14 kV \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.5, Page No 283" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Z=350.0 \t\t#surge impedencr (ohms)\n", "L=800*(10**-6) \n", "t=2*(10**-6)\n", "E=500.0\n", "\n", "#Calculations\n", "E1=E*(1-math.exp((-1*t*2*Z/L)))\n", "\n", "#Results\n", "print(\"The maximum value of transmitted voltage=%.1f kV \" %E1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum value of transmitted voltage=413.1 kV \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.6, Page No 285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "eo=50.0\n", "x=50.0\n", "R=6.0\n", "Z=400.0\n", "G=0\n", "v=3*(10**5)\n", "e=2.68\n", "\n", "#Calculations\n", "e1=(eo*(e**((-1/2)*R*x/Z)))\n", "# answess does not match due to the difference in rounding off of digits. \n", "print(\"(i)the value of the Voltage wave when it has travelled through a distance 50 Km=%.1f kV \" %e1)\n", "Pl=e1*e1*1000.0/400\n", "io=eo*1000.0/Z\n", "t=x/v\n", "H=-(50*125*400*((e**-0.75)-1))/(6.0*3*10**5)\n", "\n", "#Results\n", "print(\"(ii)Power loss=%.3fkW \\n heat loss=%.3f kJ\" %(Pl,H))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)the value of the Voltage wave when it has travelled through a distance 50 Km=23.9 kV \n", "(ii)Power loss=1424.550kW \n", " heat loss=0.726 kJ\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }