{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 07 : Mechanical Design of Transmission Lines" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.1, Page No 161" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "sf=5.0\t #Factor of safety\n", "d=0.95\t # conductor dia(cm)\n", "\n", "#Calculations\n", "Ws=4250.0/sf # working stress(kg/cm_2)\n", "A=math.pi*(d**2)/4.0 # area (cm_2)\n", "Wp=40.0*d*(10**-2) #wind pressure (kg/cm)\n", "W=math.sqrt((.65**2)+(0.38**2)) # Total effective weight(kg/m)\n", "T=850.0*A # working tension (kg)\n", "c=T/W\n", "l=160.0\n", "d=l**2/(8*800)\n", "\n", "#Results\n", "print(\"sag, d=%.0f metres \" %d)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "sag, d=4 metres \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.2, Page No 161" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "D=1.95 + 2.6\t\t\t# overall diameter(cm)\n", "A=4.55*(10**-2)\t\t\t# area(m_2)\n", "d=19.5\t\t\t\t\t#diameter of conductor(mm)\n", "r=d/2.0\t\t\t\t\t#radius of conductor(mm)\n", "\n", "#Calculations\n", "Wp=A*39 #wind pressure(kg/m_2)\n", "t=13 #ice coating(mm)\n", "US=8000.0 # ultimate strength(kg)\n", "Aice=math.pi*(10**-6)*((r+t)**2 - r**2)#area section of ice (m_2)\n", "Wice=Aice*910\n", "W=(math.sqrt((.85+Wice)**2 + Wp**2))# total weight of ice (kg/m)\n", "T=US/2.0 # working teansion (kg)\n", "c=T/W\n", "l=275 #length of span(m)\n", "Smax=l*l/(8*c)\n", "\n", "#Results\n", "print(\"Maximum sag=%.1f metres\\n\" %Smax)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum sag=6.4 metres\n", "\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.3, Page No 162" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy\n", "#initialisation of variables\n", "A=13.2\t\t\t\t# cross section of conductor (mm_2)\n", "Ar=4.1*(10**-3)\t\t# projected area\n", "Wp=Ar*48.82\t\t\t# wind loadind /m(kg/m)\n", "w=0.115\n", "\n", "#Calculations\n", "W=math.sqrt((.1157**2)+(Wp**2))# effective loading per metre(kg)\n", "q1=W/0.115\n", "b=w/A\n", "f1=21.0\t\t#working stress\n", "T1=f1*A\n", "c=T1/W\n", "l=45.7\n", "S=l*l/(8*c)\n", "dT=32.2-4.5# difference in temperature\n", "E=1.26*(10000)\n", "a=16.6*(10**-6)\n", "d=8.765*(10**-3)\n", "K=f1-((l*d*q1)**2)*E/(24*f1*f1)\n", "p=numpy.polynomial.polynomial.polyval3d(-84.23,0,-14.44,1)\n", "r=numpy.roots(p)\n", "f2= 14.823332# accepted value of f2\n", "T=f2*A\n", "c=T/w\n", "d1=l*l/(8*c)\n", "\n", "#Results\n", "print(\"sag at 32.2 Celsius , d=%.4f metres\" %d1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "sag at 32.2 Celsius , d=0.1534 metres\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.4 Page No 165" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "T=2000.0 # working tension (kg)\n", "w=1.0 \n", "c=T/w \n", "h=90-30 \n", "l=300.0 #span(m)\n", "\n", "#Calculations\n", "a=(l/2)-(c*h/l) \n", "b=550.0 \n", "d1=a*a/(2*c) \n", "d2=(400**2)/(2*c) # sag at 400 metres(m)\n", "Hm=d2-d1 #height of mid point with respect to A\n", "Cl=30+Hm\n", "\n", "#Results \n", "print(\"The clearance between the conductor and water level midway between the towers= %.3f metres \" %Cl) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The clearance between the conductor and water level midway between the towers= 54.375 metres \n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }