{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 06 : Corona" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.1, Page No 142" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "t=21.0 # air temperature\n", "b=73.6 # air pressure\n", "do=3.92*73.6/(273+t)\n", "m=0.85\n", "r=0.52\n", "d=250.0\n", "\n", "#Calculations\n", "Vd=21.1*m *do*r*math.log(250/.52)\n", "vd=math.sqrt(3)*Vd\n", "m=0.7\n", "vv=21.1*m*do*r*(1+(0.3/math.sqrt(r*do)))*math.log(250/0.52)\n", "Vv=vv*math.sqrt(3)\n", "Vvg=Vv*0.8/0.7\n", "\n", "#Results\n", "print(\"critical disruptive line to line voltage=%.2f kV \" %vd)\n", "print(\"visual critical voltage for local corona=%.2f kV \" %vv)\n", "print(\"visual critical voltage for general corona=%.2f kV \" %Vvg)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "critical disruptive line to line voltage=97.89 kV \n", "visual critical voltage for local corona=66.09 kV \n", "visual critical voltage for general corona=130.83 kV \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.2, Page No 142" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables \n", "d=2.5 \n", "di=3.0 # internal diameter\n", "do=9.0 # external diameter\n", "ri=di/2.0 # internal radius\n", "ro=do/2.0 # external diameter\n", "\n", "#Calculations\n", "g1max=20/(1.25*math.log(ri/(d/2))+0.208*1.5*math.log(ro/ri)) \n", "\n", "#Results\n", "print(\"g1max=%.0f kV/cm\" %g1max) \n", "print(\"Since the gradient exceeds 21.1/kV/cm , corona will be present.\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "g1max=35 kV/cm\n", "Since the gradient exceeds 21.1/kV/cm , corona will be present.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.3, Page No 143" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "m=1.07\n", "r=0.625\n", "\n", "#Calculations\n", "V=21*m *r*math.log(305.0/0.625)\n", "Vl=V*math.sqrt(3.0)\n", "\n", "#Results\n", "print(\"critical disruptive voltage=%.0f kV \" %V)\n", "print(\"since operating voltage is 110 kV , corona loss= 0 \")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "critical disruptive voltage=87 kV \n", "since operating voltage is 110 kV , corona loss= 0 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.4 Page No 143" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "r=0.5\n", "\n", "#Calculations\n", "V=21*r*math.log(100.0/0.5)\n", "\n", "#Results\n", "print(\"critical disruptive voltage=%.1f kV\" %V)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "critical disruptive voltage=55.6 kV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5, Page No 146" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "D=1.036 \t # conductor diameter(cm)\n", "d=2.44\t #delta spacing(m)\n", "r=D/2 \t #radius(cm)\n", "\n", "#Calculations\n", "Ratio=d*100.0/r \n", "j=r/(d*100.0) \n", "Rat2=math.sqrt(j) \n", "t=26.67 \t #temperature\n", "b=73.15 # barometric pressure\n", "mv=0.72 \n", "V=63.5 \n", "f=50.0\t #frequency\n", "do=3.92*b/(273+t) #do=dell\n", "vd=21.1*.85*do*r*math.log(Ratio) \n", "print(\"critical disruptive voltage=%.2f kV\" %vd) \n", "Vv=21.1*mv*do*r*(1+(0.3/math.sqrt(r*do)))*math.log(Ratio) \n", "Pl=241*(10**-5)*(f+25)*Rat2*((V-vd)**2)/do #power loss\n", "Vd=0.8*vd \n", "Pl2=241*(10**-5)*(f+25)*Rat2*((V-Vd)**2)*160/do #loss per phase /km\n", "Total=3.0*Pl2\n", "\n", "#Results \n", "print(\"visual critical voltage=%.0f kV\" %Vv) \n", "print(\"Power loss=%.3f kW/phase/km\" %Pl) \n", "print(\"under foul weather condition ,\") \n", "print(\"critical disruptive voltage=%.2f kV\" %Vd) \n", "print(\"Total loss=%.0f kW\\n\"%Total) \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "critical disruptive voltage=54.72 kV\n", "visual critical voltage=66 kV\n", "Power loss=0.672 kW/phase/km\n", "under foul weather condition ,\n", "critical disruptive voltage=43.77 kV\n", "Total loss=1626 kW\n", "\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }