{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 02 : Line Constant Calculations" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2, Page No 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "GMD=0.7788*0.8/(2*100)\n", "Mgmd=((1.6*3.2*1.6)**(1.0/3))\n", "\n", "#Calculations\n", "Z=2*(10**-4)*1000*math.log(2.015/.003115)\n", "\n", "#Results\n", "print(\"The self GMD of the conductor =%.6f metres\" %GMD)\n", "print(\"The mutual GMD of the conductor =%.3f metres \" %Mgmd)\n", "print(\"Inductance =%.3f mH/km\\n\" %Z)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The self GMD of the conductor =0.003115 metres\n", "The mutual GMD of the conductor =2.016 metres \n", "Inductance =1.294 mH/km\n", "\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3, Page No 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "r=1\n", "D11=r**1\n", "D12=2*r\n", "D14=4*r\n", "\n", "#Calculations\n", "D13=math.sqrt(16-4)*r\n", "Ds1=((1*2*2*math.sqrt(3)*4*2*math.sqrt(3)*2*2)**(1.0/7))*r\n", "Ds7=((2*1*2*2**2*2*2)**(1.0/7))*r #we get this after Taking r outside the 1/7th root\n", "Ds=((((1*2*2*math.sqrt(3)*4*2*math.sqrt(3)*2*2)**(1.0/7))**6)*((2*1*2*2**2*2*2)**(1.0/7)))**(1.0/7)*r\n", "Dseq=((.7788)**(1.0/7))*Ds\n", "\n", "#Results\n", "print(\"Dseq.= %.2fr\" %Dseq)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dseq.= 2.18r\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4, Page No 30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "GMDa=0.001947\t\t\t\t# GMD of conductor in group A\n", "\n", "#Calculations\n", "DSA=((.001947*6*12*.001947*6*6*0.001947*6*12)**(1.0/9))\n", "DSB=math.sqrt(5*(10**-3)*.7788*6)\n", "Dae=math.sqrt((9**2)+6**2)\n", "Dcd=math.sqrt((12**2)+9**2)\n", "DMA=((9*10.81*10.81*9*15*10.81)**(1.0/6))\n", "LA=2*(10**-7)*(10**6)*math.log(DMA/DSA)\n", "LB=2*(10**-7)*(10**6)*math.log(DMA/DSB)\n", "Tot=LA+LB\n", "\n", "#Results\n", "print(\"inductance of line A,LA=%.3f mH/km\" %LA)\t\t#Answers don't match due to difference in rounding off of digits\n", "print(\"inductance of line B,LB=%.1f mH/km\" %LB)\t\t#Answers don't match due to difference in rounding off of digits\n", "print(\"total inductance of line =%.2f mH/km\" %Tot)\t#Answers don't match due to difference in rounding off of digits\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "inductance of line A,LA=0.621 mH/km\n", "inductance of line B,LB=0.9 mH/km\n", "total inductance of line =1.47 mH/km\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.5 Page No 32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "GMDc=1.266*0.7788*(10**-2)\t\t# self GMD of each conductor\n", "Dbc=math.sqrt((4**2)+(.75**2))\n", "Dab=Dbc\n", "\n", "#Calculations\n", "Dab=math.sqrt((4**2)+(8.25**2))\n", "Daa=math.sqrt((8**2)+(7.5**2))\n", "Dm1=(Dbc*8*7.5*9.1685)**(1.0/4)\n", "Dm2=(Dbc*Dbc*9.1685*9.1685)**(1.0/4)\n", "Dm3=Dm1\n", "Dm=((Dm1*Dm2*Dm3)**(1.0/3))\n", "Ds1=math.sqrt(GMDc*Daa)\t\t# self GMD of each phase\n", "Ds3=Ds1\n", "Ds2=math.sqrt(GMDc*9)\n", "Ds=((Ds1*Ds2*Ds3)**(1.0/3))\n", "Z=2*(10**-4)*(1000)*math.log(Dm/Ds)\n", "\n", "#Results\n", "print(\"inductance=%.3f mH/km/phase\\n\" %Z)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "inductance=0.607 mH/km/phase\n", "\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6, Page No 33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "GMDs=.0069\t\t#self GMD of the conductor\n", "Dab=math.sqrt((3**2)+.5**2)\n", "Dbc=Dab\n", "Dac=6.0\n", "\n", "#Calculations\n", "Dab=math.sqrt((3**2)+6**2)\n", "Daa=math.sqrt((6**2)+5.5**2)\n", "Dm1=((3.04*6*5.5*6.708)**.25)\n", "Dm2=((3.04*3.04*6.708*6.708)**.25)\n", "Dm=4.89\n", "Ds1=math.sqrt(GMDs*Daa)\n", "Ds2=0.2217\n", "Ds=.228\n", "Z=2*(10**-7)*(10**6)*math.log(Dm/Ds)\n", "\n", "#Results\n", "print(\"inductance =%.3f mH/km\" %Z)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "inductance =0.613 mH/km\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7, Page No 34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Ds=math.sqrt(0.025*.4*.7788)\n", "\n", "#Calculations\n", "Dm=((6.5*13.0*6.5)**(1.0/3))\n", "Z=2*(10**-4)*1000*math.log(Dm/Ds)\n", "\n", "#Results\n", "print(\"inductance =%.3f mH/km/phase\" %Z)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "inductance =0.906 mH/km/phase\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }