{ "metadata": { "name": "", "signature": "sha256:b2b5fb16825d4183b23bc2d431db6308dc6c5888398753fd91beb4d61ab4253a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2-Network Theorem 1" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg2.4" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem-1\n", "##pg no.-2.4\n", "##example2.1\n", "print(\"\\nConverting the two delta networks formed by resistors 4.5 Ohm, 3Ohm, and 7.5Ohm into equivalent star networks\");\n", "a=4.5;\n", "b=3.;\n", "c=7.5;\n", "R1= (a*c)/(a+b+c);\n", "R2= (c*b)/(c+b+a);\n", "R3= (a*b)/(a+b+c);\n", "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nR1=R6 = \",R1,\" Ohm\" and \"\\nR2=R5 =\",R2,\" Ohm\" and \"\\nR3=R4 =\" ,R3,\" Ohm\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Converting the two delta networks formed by resistors 4.5 Ohm, 3Ohm, and 7.5Ohm into equivalent star networks\n", "\n", "R1=R6 = 2.25 \n", "R2=R5 = 1.50 \n", "R3=R4 = 0.90 Ohm \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg2.5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem-1\n", "##pg no.-2.2\n", "##example2.5\n", "##converting delta network to star network\n", "a=10.;\n", "b=10.;\n", "c=10.;\n", "R=(a*b)/(a+b+c);\n", "print(\"\\nConverting the delta formed by three resistors of 10 Ohm into an equivalent star network\");\n", "print'%s %.2f %s'%(\"\\nR1=R2=R3= \",R,\" Ohm\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Converting the delta formed by three resistors of 10 Ohm into an equivalent star network\n", "\n", "R1=R2=R3= 3.33 Ohm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg2.7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem-1\n", "##pg no.-2.7\n", "##example2.3\n", "a=4.;\n", "b=3.;\n", "c=6.;\n", "##star to delta conversion\n", "R1=c+a+((a*c)/b);\n", "R2=c+b+((c*b)/a);\n", "R3=a+b+((a*b)/c);\n", "x=1.35;\n", "y=0.9;\n", "RAB=(c*(x+y))/(c+x+y);\n", "print'%s %.2f %s'%(\"\\nR1 = \",R1,\" Ohm\");\n", "print'%s %.2f %s'%(\"\\nR2 = \",R2,\" Ohm\");\n", "print'%s %.2f %s'%(\"\\nR3 = \",R3,\" Ohm\");\n", "print'%s %.2f %s'%(\"\\nThe network can be simplified as, \\nRAB = \",RAB,\" Ohm\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "R1 = 18.00 Ohm\n", "\n", "R2 = 13.50 Ohm\n", "\n", "R3 = 9.00 Ohm\n", "\n", "The network can be simplified as, \n", "RAB = 1.64 Ohm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg2.9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem-1\n", "##pg no.-2.9\n", "##example2.5\n", "##converting delta network to star network\n", "a=25.;\n", "b=20.;\n", "c=35.;\n", "R1=(b*c)/(a+b+c);\n", "R2=(a*b)/(a+b+c);\n", "R3=(a*c)/(a+b+c);\n", "print(\"\\nConverting the delta formed by resistors 20 Ohm ,25 Ohm, 35 Ohm into an equivalent star network\");\n", "print'%s %.2f %s'%(\"\\nR1= \",R1,\" Ohm\");\n", "print'%s %.2f %s'%(\"\\nR2= \",R2,\" Ohm\");\n", "print'%s %.2f %s'%(\"\\nR3= \",R3,\" Ohm\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Converting the delta formed by resistors 20 Ohm ,25 Ohm, 35 Ohm into an equivalent star network\n", "\n", "R1= 8.75 Ohm\n", "\n", "R2= 6.25 Ohm\n", "\n", "R3= 10.94 Ohm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg2.15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem-1\n", "##pg no.-2.15\n", "##example2.8\n", "a=5;\n", "b=4;\n", "c=3;\n", "##Star to delta conversion\n", "R1=a+b+((a*b)/c);\n", "R2=c+b+((c*b)/a);\n", "R3=a+c+((a*c)/b);\n", "a1=6;\n", "b1=4;\n", "c1=8;\n", "##Satr to delta conversion\n", "R4=a1+b1+((a1*b1)/c1);\n", "R5=c1+b1+((c1*b1)/a1);\n", "R6=a1+c1+((a1*c1)/b1);\n", "x=6.17;\n", "y=9.78;\n", "RAB=(x*y)/(x+y);\n", "print(\"\\nConverting star network formed by 3 Ohm,4 Ohm ,5 Ohm into equivalent delta network \");\n", "print'%s %.2f %s %.2f %s %.2f %s'%(\"\\nR1= \",R1,\" Ohm\" and \" \\nR2= \",R2,\" Ohm\" and \" \\nR3 = \",R3,\" Ohm\");\n", "print(\"\\nSimilarly, converting star network formed by 6 Ohm,4 Ohm ,8 Ohm into equivalent delta network\");\n", "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nR4= \",R4,\" Ohm\" and \" \\nR5= \",R5,\" Ohm \" and \"\\nR6 =\",R6,\" Ohm\");\n", "print'%s %.2f %s'%(\"\\n Simplifying the parallel networks, we get \\nRAB = \",RAB,\" Ohms\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Converting star network formed by 3 Ohm,4 Ohm ,5 Ohm into equivalent delta network \n", "\n", "R1= 15.00 \n", "R2= 9.00 \n", "R3 = 11.00 Ohm\n", "\n", "Similarly, converting star network formed by 6 Ohm,4 Ohm ,8 Ohm into equivalent delta network\n", "\n", "R4= 13.00 \n", "R5= 17.00 \n", "R6 = 26.00 Ohm \n", "\n", " Simplifying the parallel networks, we get \n", "RAB = 3.78 Ohms\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg2.18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.18\n", "##example2.9\n", "import math\n", "import numpy\n", "print(\"Applying KVL to mesh 1\");\n", "print(\"10*I1-3*I2-6*I3=0\")##equation 1\n", "print(\"Applying KVL to mesh 2\");\n", "print(\"-3*I1+10*I2=-5\");##equation 2\n", "print(\"Applying KVL to mesh 3\");\n", "print(\"-6*I1+10*I3=25\");##equation 3\n", "print(\"Solving the three equations\");\n", "A=numpy.matrix([[10, -3, -6],[-3 ,10 ,0],[-6, 0, 10]]) ##solving the equations in matrix form\n", "B=numpy.matrix([[10], [-5], [25]])\n", "X=numpy.dot(numpy.linalg.inv(A),B)\n", "\n", "print[X];\n", "print(\"I1=4.27 A\");\n", "print(\"I2=0.78 A\");\n", "print(\"I3=5.06 A\");\n", "print(\"I5ohm=4.27 A\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KVL to mesh 1\n", "10*I1-3*I2-6*I3=0\n", "Applying KVL to mesh 2\n", "-3*I1+10*I2=-5\n", "Applying KVL to mesh 3\n", "-6*I1+10*I3=25\n", "Solving the three equations\n", "[matrix([[ 4.27272727],\n", " [ 0.78181818],\n", " [ 5.06363636]])]\n", "I1=4.27 A\n", "I2=0.78 A\n", "I3=5.06 A\n", "I5ohm=4.27 A\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg2.19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.19\n", "##example 2.10\n", "import math\n", "import numpy\n", "from numpy import linalg\n", "print(\"Applying KVL to mesh 1\");\n", "print(\"7*I1-I2=10\")##equation 1\n", "print(\"Applying KVL to mesh 2\");\n", "print(\"-I1+6*I2-3*I3=0\");##equation 2\n", "print(\"Applying KVL to mesh 3\");\n", "print(\"-3*I2+13*I3=-20\");##equation 3\n", "print(\"Solving the three equations\");\n", "A=numpy.matrix([[7 ,-1, 0],[-1, 6, -3],[0 ,-3, 13]]);##solving the equations in matrix form\n", "B=numpy.matrix([[10], [0], [-20]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"I1=1.34 A\");\n", "print(\"I1=-0.62 A\");\n", "print(\"I3=-1.68 A\");\n", "print(\"I2ohm=1.34 A\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KVL to mesh 1\n", "7*I1-I2=10\n", "Applying KVL to mesh 2\n", "-I1+6*I2-3*I3=0\n", "Applying KVL to mesh 3\n", "-3*I2+13*I3=-20\n", "Solving the three equations\n", "[matrix([[ 1.34042553],\n", " [-0.61702128],\n", " [-1.68085106]])]\n", "I1=1.34 A\n", "I1=-0.62 A\n", "I3=-1.68 A\n", "I2ohm=1.34 A\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg2.20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.20\n", "##example 2.11\n", "import math\n", "import numpy\n", "print(\"Applying KVL to mesh 1\");\n", "print(\"3*I1-I2-2*I3=8\");##equation 1\n", "print(\"Applying KVL to mesh 2\");\n", "print(\"-I1+8*I2-3*I3=10\");##equation 2\n", "print(\"Applying KVL to mesh 3\");\n", "print(\"-2*I1-3*I2+10*I3=12\");##equation 3\n", "print(\"Solving the three equations\");\n", "A=numpy.matrix([[3 ,-1 ,-2],[-1, 8 ,-3],[-2 ,-3 ,10]]);##solving the equations in matrix form\n", "B=numpy.matrix([[8], [10] ,[12]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"I1=6.01 A\");\n", "print(\"I1=3.27 A\");\n", "print(\"I3=3.38 A\");\n", "print(\"I5ohm=3.38 A\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KVL to mesh 1\n", "3*I1-I2-2*I3=8\n", "Applying KVL to mesh 2\n", "-I1+8*I2-3*I3=10\n", "Applying KVL to mesh 3\n", "-2*I1-3*I2+10*I3=12\n", "Solving the three equations\n", "[matrix([[ 6.01257862],\n", " [ 3.27044025],\n", " [ 3.3836478 ]])]\n", "I1=6.01 A\n", "I1=3.27 A\n", "I3=3.38 A\n", "I5ohm=3.38 A\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg2.21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.21\n", "##example 2.12\n", "import numpy\n", "print(\"Applying KVL to mesh 1\");\n", "print(\"8*I1-I2-4*I3=4\");##equation 1\n", "print(\"Applying KVL to mesh 2\");\n", "print(\"-I1+8*I2-5*I3=0\");##equation 2\n", "print(\"Applying KVL to mesh 3\");\n", "print(\"-4*I1-5*I2+15*I3=0\");##equation 3\n", "print(\"Solving the three equations\");\n", "A=numpy.matrix([[8 ,-1 ,-4],[-1 ,8 ,-5],[-4 ,-5 ,15]]);##solving the equations in matrix form\n", "B=numpy.matrix([[4] ,[0], [0]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"I1=0.66\");\n", "print(\"I1=0.24 A\");\n", "print(\"I3=0.26 A\");\n", "print(\"current supplied by the battery = 0.66 A\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KVL to mesh 1\n", "8*I1-I2-4*I3=4\n", "Applying KVL to mesh 2\n", "-I1+8*I2-5*I3=0\n", "Applying KVL to mesh 3\n", "-4*I1-5*I2+15*I3=0\n", "Solving the three equations\n", "[matrix([[ 0.65857886],\n", " [ 0.24263432],\n", " [ 0.25649913]])]\n", "I1=0.66\n", "I1=0.24 A\n", "I3=0.26 A\n", "current supplied by the battery = 0.66 A\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg2.22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.22\n", "##example 2.13\n", "import math\n", "import numpy\n", "print(\"Applying KVL to mesh 1\");\n", "print(\"V+13*I1-2*I2-5*I3=20\");##mesh equation 1\n", "print(\"Applying KVL to mesh 2\");\n", "print(\"2*I1-6*I2+I3=0\");##mesh equation 2\n", "print(\"Applying KVL to mesh 3\");\n", "print(\"V+5*I1+I2-10*I3=0\");##mesh equation 3\n", "print(\"putting I1=0 in equation 1, 2 and 3 we get\"); \n", "print(\"V-2*I2-5*I3=20\");##equation 1\n", "print(\"-6*I2+I3=0\");##equation 2\n", "print(\"V+I2-10*I3=0\");##equation 3\n", "print(\"Solving the three equations\");\n", "A=numpy.matrix([[1 ,-2 ,-5],[0 ,-6 ,1],[1 ,1 ,-10]]);##solving the equations in matrix form\n", "B=numpy.matrix([[20], [0] ,[0]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"V=43.7 V\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KVL to mesh 1\n", "V+13*I1-2*I2-5*I3=20\n", "Applying KVL to mesh 2\n", "2*I1-6*I2+I3=0\n", "Applying KVL to mesh 3\n", "V+5*I1+I2-10*I3=0\n", "putting I1=0 in equation 1, 2 and 3 we get\n", "V-2*I2-5*I3=20\n", "-6*I2+I3=0\n", "V+I2-10*I3=0\n", "Solving the three equations\n", "[matrix([[ 43.7037037 ],\n", " [ 0.74074074],\n", " [ 4.44444444]])]\n", "V=43.7 V\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex14-pg2.22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.13\n", "##example2.14\n", "import math\n", "import numpy\n", "print(\"Mesh 1 contains a current source of 6A.Hence, we cannot write KVL equation for Mesh 1.direction of current source and mesh current I1 are same,\");\n", "print(\"I1=6A\");##equation 1\n", "print(\"Applying KVL to mesh 2\");\n", "print(\"18*I2-6*I3=108\");##equation 2\n", "print(\"Applying KVL to mesh 3\");\n", "print(\"6*I2-11*I3=9\");##equation 3\n", "print(\"Solving the three equations\");\n", "A=numpy.matrix([[18, -6],[6 ,-11]])##solving the equations in matrix form\n", "B=numpy.matrix([[108] ,[9]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"I3 = 3A\");\n", "print(\"I2ohm = 3A\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mesh 1 contains a current source of 6A.Hence, we cannot write KVL equation for Mesh 1.direction of current source and mesh current I1 are same,\n", "I1=6A\n", "Applying KVL to mesh 2\n", "18*I2-6*I3=108\n", "Applying KVL to mesh 3\n", "6*I2-11*I3=9\n", "Solving the three equations\n", "[matrix([[ 7.],\n", " [ 3.]])]\n", "I3 = 3A\n", "I2ohm = 3A\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex15-pg2.23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.23\n", "##example2.15\n", "print(\"from the fig,\");\n", "print(\"IA=I1\");##equation 1\n", "print(\"IB=I2\");##equation 2\n", "print(\"Applying Kvl to mesh 1:\");\n", "print(\"5-5*I1-10*IB-10*(I1-I2)-5*IA=0\");\n", "print(\"5-5*I1-10*I2-10*I1+10*I2-5*I1=0\");\n", "print(\"-20*I1=-5\");\n", "I1=5./20.;\n", "print'%s %.2f %s'%(\"I1= \",I1,\" A\");##equation 3\n", "print(\"Applying Kvl to mesh 2:\");\n", "print(\"15*I1-15*I2=10\");##equation 4\n", "print(\"Put I1=0.25 A in equation 4\");\n", "print(\"-6.25=15*I2\");\n", "I2=-6.25/15.;\n", "print'%s %.2f %s '%(\"I2= \",I2,\" A\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from the fig,\n", "IA=I1\n", "IB=I2\n", "Applying Kvl to mesh 1:\n", "5-5*I1-10*IB-10*(I1-I2)-5*IA=0\n", "5-5*I1-10*I2-10*I1+10*I2-5*I1=0\n", "-20*I1=-5\n", "I1= 0.25 A\n", "Applying Kvl to mesh 2:\n", "15*I1-15*I2=10\n", "Put I1=0.25 A in equation 4\n", "-6.25=15*I2\n", "I2= -0.42 A \n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex17-pg2.24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.25\n", "##example2.17\n", "import math\n", "import numpy\n", "print(\"from the fig,\");\n", "print(\"V1=-5*I1\");##equation 1\n", "print(\"V2=2*I2\");##equation 2\n", "print(\"Applying Kvl to mesh 1:\");\n", "print(\"20*I1+3*I2=-5\");##equation 3\n", "print(\"Applying Kvl to mesh 2:\");\n", "print(\"11*I1-3*I2=10\");##equation 4\n", "print(\"Solving equations 3 and 4\");##solving equations in matrix form\n", "A=numpy.matrix([[20, 3],[11, -3]]);\n", "B=numpy.matrix([[-5], [10]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"I1=0.161 A\");\n", "print(\"I2=-2.742 A\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from the fig,\n", "V1=-5*I1\n", "V2=2*I2\n", "Applying Kvl to mesh 1:\n", "20*I1+3*I2=-5\n", "Applying Kvl to mesh 2:\n", "11*I1-3*I2=10\n", "Solving equations 3 and 4\n", "[matrix([[ 0.16129032],\n", " [-2.74193548]])]\n", "I1=0.161 A\n", "I2=-2.742 A\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex18-pg2.25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem-1\n", "##pg no.-2.25\n", "##example2.18\n", "import numpy\n", "print(\"from the fig,\");\n", "print(\"Iy=I1\");##equation 1\n", "print(\"Ix=I1-I2\");##equation 2\n", "print(\"Applying Kvl to mesh 1:\");\n", "print(\"-10*I1+3*I2=5\");##equation 3\n", "print(\"Applying Kvl to mesh 2:\");\n", "print(\"-I1-3*I2=10\");##equation 4\n", "print(\"Solving equations 3 and 4\");##solving equations in matrix form\n", "A=numpy.matrix([[-10 ,3],[-1, -3]]);\n", "B=numpy.matrix([[5] ,[10]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"I1=-1.364 A\");\n", "print(\"I2=-2878 A\");\n", "x=-1.364;\n", "y=-2.878;\n", "Ix=x-y;\n", "print'%s %.2f %s %.2f %s '%(\"\\nIy = \",x,\" A\" and \" \\nIx = \",Ix,\" A\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from the fig,\n", "Iy=I1\n", "Ix=I1-I2\n", "Applying Kvl to mesh 1:\n", "-10*I1+3*I2=5\n", "Applying Kvl to mesh 2:\n", "-I1-3*I2=10\n", "Solving equations 3 and 4\n", "[matrix([[-1.36363636],\n", " [-2.87878788]])]\n", "I1=-1.364 A\n", "I2=-2878 A\n", "\n", "Iy = -1.36 \n", "Ix = 1.51 A \n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex19-pg2.26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.26\n", "##example2.19\n", "import math\n", "import numpy\n", "print(\"Applying KVL to mesh 1:\");\n", "print(\"11*I1-10*I2=2\");##equation 1\n", "print(\"Writing current equation to supermesh:\")\n", "print(\"I3-I2=4\");##equation 2\n", "print(\"Applying KVL to outer path of supermesh:\");\n", "print(\"2*I1-3*I2-3*I3=0\");##equation 3\n", "print(\"solving these equations we get :\");##solving equations in matrix form\n", "A=numpy.matrix([[11, -10, 0],[0 ,-1 ,1],[2 ,-3, -3]]);\n", "B=numpy.matrix([[2] ,[4] ,[0]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "I1=-2.35\n", "I2=-2.78\n", "I3=1.22\n", "I4=I1-I2;\n", "print'%s %.2f %s'%(\"\\ncurrent through the 10 ohm resistor = I1-I2 = \",I4,\" A\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KVL to mesh 1:\n", "11*I1-10*I2=2\n", "Writing current equation to supermesh:\n", "I3-I2=4\n", "Applying KVL to outer path of supermesh:\n", "2*I1-3*I2-3*I3=0\n", "solving these equations we get :\n", "[matrix([[-2.34782609],\n", " [-2.7826087 ],\n", " [ 1.2173913 ]])]\n", "\n", "current through the 10 ohm resistor = I1-I2 = 0.43 A\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex20-pg2.26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.26\n", "##example2.20\n", "import math\n", "import numpy\n", "print(\"writing equation for supermesh,\");\n", "print(\"I1-I3=7\");##equation 1\n", "print(\"Applying Kvl to the outer path of the supermesh:\");\n", "print(\"-I1+4*I2-4*I3 = -7\");##equation 2\n", "print(\"Applying Kvl to mesh 2:\");\n", "print(\"I1-6*I2+3*I3 = 0\");##equation 3\n", "print(\"Solving equations 1 ,2 and 3\");##solving equations in matrix form\n", "A=numpy.matrix([[1 ,0 ,-1],[-1 ,4 ,-4],[1 ,-6 ,3]]);\n", "B=numpy.matrix([[7], [-7], [0]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"I1=9 A\");\n", "print(\"I2=-2.5 A\");\n", "print(\"I3=-2 A\");\n", "x=2.5;\n", "y=2;\n", "z=x-y;\n", "print'%s %.2f %s'%(\"\\nCurrent through the 3-Ohm resistor = I2-I3 =\",z,\" A\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "writing equation for supermesh,\n", "I1-I3=7\n", "Applying Kvl to the outer path of the supermesh:\n", "-I1+4*I2-4*I3 = -7\n", "Applying Kvl to mesh 2:\n", "I1-6*I2+3*I3 = 0\n", "Solving equations 1 ,2 and 3\n", "[matrix([[ 9. ],\n", " [ 2.5],\n", " [ 2. ]])]\n", "I1=9 A\n", "I2=-2.5 A\n", "I3=-2 A\n", "\n", "Current through the 3-Ohm resistor = I2-I3 = 0.50 A\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex21-pg2.27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.27\n", "##example2.21\n", "import math\n", "import numpy\n", "print(\"Applying KVL to mesh 1:\");\n", "print(\"15*I1-10*I2-5*I3=50\");##equation 1\n", "print(\"Writing current equation to supermesh:\")\n", "print(\"I2-I3=2 A\");##equation 2\n", "print(\"Applying KVL to outer path of supermesh:\");\n", "print(\"-15*I1+12*I2+6*I3=0\");##equation 3\n", "print(\"solving these equations we get :\");##solving equations in matrix form\n", "A=numpy.matrix([[15, -10, -5],[0 ,1 ,-1],[-15, 12, 6]]);\n", "B=numpy.matrix([[50] ,[2] ,[0]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "I1=20.\n", "I2=17.33\n", "I3=15.33\n", "I4=I1-I3;\n", "print'%s %.2f %s'%(\"\\ncurrent through the 5 ohm resistor = I1-I3 = \",I4,\" A\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KVL to mesh 1:\n", "15*I1-10*I2-5*I3=50\n", "Writing current equation to supermesh:\n", "I2-I3=2 A\n", "Applying KVL to outer path of supermesh:\n", "-15*I1+12*I2+6*I3=0\n", "solving these equations we get :\n", "[matrix([[ 20. ],\n", " [ 17.33333333],\n", " [ 15.33333333]])]\n", "\n", "current through the 5 ohm resistor = I1-I3 = 4.67 A\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex22-pg2.28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.28\n", "##example2.22\n", "import math\n", "import numpy\n", "print(\"from the fig,\");\n", "print(\"I4=40\");##equation 1\n", "print(\"\\nmeshes 2 and 3 form a supermesh. current equation for supermesh,\")\n", "print(\"-I1+2*I2-I3 = 0\");##equation 2\n", "print(\"Applying Kvl to supermesh:\");\n", "print(\"-1/5(I2-I1)-1/20*I2-1/15*I3-1/2(I3-I4)=0\");##equation 3\n", "print(\"applying KVL to mesh 1\");\n", "print(\"-1/10*I1-1/5(I1-I2)-1/6(I1-I4)=6\");##equation 4\n", "print(\"Solving equations 1 ,2 ,3 and 4\");##solving equations in matrix form\n", "A=numpy.matrix([[0 ,0 ,0 ,1],[-1, 2 ,-1 ,0],[0.2, -0.25, -17/30, 0.5],[-7/15, 0.2, 0 ,1/6]]);\n", "B=numpy.matrix([[40], [0] ,[0], [6]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"I1=10 A\");\n", "print(\"I2=-20 A\");\n", "print(\"I3=30 A\");\n", "print(\"I4=40 A\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from the fig,\n", "I4=40\n", "\n", "meshes 2 and 3 form a supermesh. current equation for supermesh,\n", "-I1+2*I2-I3 = 0\n", "Applying Kvl to supermesh:\n", "-1/5(I2-I1)-1/20*I2-1/15*I3-1/2(I3-I4)=0\n", "applying KVL to mesh 1\n", "-1/10*I1-1/5(I1-I2)-1/6(I1-I4)=6\n", "Solving equations 1 ,2 ,3 and 4\n", "[matrix([[ -4.72636816],\n", " [ 6.3681592 ],\n", " [ 17.46268657],\n", " [ 40. ]])]\n", "I1=10 A\n", "I2=-20 A\n", "I3=30 A\n", "I4=40 A\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex24-pg2.29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.29\n", "import numpy\n", "##example2.24\n", "print(\"Applying KCL to node 1:\");\n", "print(\"2*V1-V2 = 2\");##equation 1\n", "print(\"Applying KCL to node 2:\");\n", "print(\"3*V2-V1 = 4\");##equation 2\n", "print(\"Solving equations 1 and 2\");##solving equations in matrix form\n", "A=([[2 ,-1],[-1 ,3]]);\n", "B=([[2] ,[4]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"V1= 2 V\");\n", "print(\"V2=-2 V\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node 1:\n", "2*V1-V2 = 2\n", "Applying KCL to node 2:\n", "3*V2-V1 = 4\n", "Solving equations 1 and 2\n", "[array([[ 2.],\n", " [ 2.]])]\n", "V1= 2 V\n", "V2=-2 V\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex25-pg2.30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.30\n", "##example2.25\n", "import numpy\n", "print(\"Applying KCL to node 1:\");\n", "print(\"8*VA-2*VB = 50\");##equation 1\n", "print(\"Applying KCL to node 2:\");\n", "print(\"-3*VA+9*VB = 85\");##equation 2\n", "print(\"Solving equations 1 and 2\");##solving equations in matrix form\n", "A=([[8 ,-2],[-3 ,9]]);\n", "B=([[50], [85]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"VA= 9.39 V\");\n", "print(\"VB= 12.58 V\");\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node 1:\n", "8*VA-2*VB = 50\n", "Applying KCL to node 2:\n", "-3*VA+9*VB = 85\n", "Solving equations 1 and 2\n", "[array([[ 9.39393939],\n", " [ 12.57575758]])]\n", "VA= 9.39 V\n", "VB= 12.58 V\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex26-pg2.30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.30\n", "import numpy\n", "##example2.26\n", "print(\"Applying KCL to node 1:\");\n", "print(\"5*V1-2*V2 = -24\");##equation 1\n", "print(\"Applying KCL to node 2:\");\n", "print(\"10*V1-31*V2+6*V3 = 300\");##equation 2\n", "print(\"Applying KCL to node 3:\");\n", "print(\"-4*V2 +9*V3 = 160\");##equation 3\n", "print(\"Solving equations 1,2 and 3\");##solving equations in matrix form\n", "A=([[5, -2 ,0],[10, -31, 6],[0, -4, 9]]);\n", "B=([[-24] ,[300] ,[160]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"V1= -8.77 V\");\n", "print(\"V2= -9.92 V\");\n", "print(\"V3= 13.37 V\");\n", "x=13.37;\n", "y=-9.92;\n", "z=(x-y)/5.;\n", "print'%s %.2f %s'%(\"\\ncurrent through the 5 ohm resistor = V3-V2/5 = \",z,\" A\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node 1:\n", "5*V1-2*V2 = -24\n", "Applying KCL to node 2:\n", "10*V1-31*V2+6*V3 = 300\n", "Applying KCL to node 3:\n", "-4*V2 +9*V3 = 160\n", "Solving equations 1,2 and 3\n", "[array([[ -8.76712329],\n", " [ -9.91780822],\n", " [ 13.36986301]])]\n", "V1= -8.77 V\n", "V2= -9.92 V\n", "V3= 13.37 V\n", "\n", "current through the 5 ohm resistor = V3-V2/5 = 4.66 A\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex27-pg2.31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.31\n", "##example2.27\n", "import numpy\n", "print(\"Applying KCL to node 1:\");\n", "print(\"50*V1-20*V2 = 2400\");##equation 1\n", "print(\"Applying KCL to node 2:\");\n", "print(\"-10*V1+19*V2 = 240\");##equation 2\n", "print(\"Solving equations 1 and 2\");##solving equations in matrix form\n", "A=([[50, -20],[-10, 19]]);\n", "B=([[2400] ,[240]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"V1= 67.2 V\");\n", "print(\"V2=-48 V\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node 1:\n", "50*V1-20*V2 = 2400\n", "Applying KCL to node 2:\n", "-10*V1+19*V2 = 240\n", "Solving equations 1 and 2\n", "[array([[ 67.2],\n", " [ 48. ]])]\n", "V1= 67.2 V\n", "V2=-48 V\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex28-pg2.32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.32\n", "##example2.28\n", "import numpy\n", "print(\"Applying KCL to node 1:\");\n", "print(\"4*VA-2*VB = 5\");##equation 1\n", "print(\"Applying KCL to node 2:\");\n", "print(\"-2*VA+3*VB = 4\");##equation 2\n", "print(\"Solving equations 1 and 2\");##solving equations in matrix form\n", "A=([[4, -2],[-2 ,3]]);\n", "B=([[5], [4]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "\n", "print(X);\n", "print(\"VA= 2.88 V\");\n", "print(\"VB= 3.25 V\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node 1:\n", "4*VA-2*VB = 5\n", "Applying KCL to node 2:\n", "-2*VA+3*VB = 4\n", "Solving equations 1 and 2\n", "[[ 2.875]\n", " [ 3.25 ]]" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "VA= 2.88 V\n", "VB= 3.25 V\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex29-pg2.33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy\n", "##Network Theorem 1\n", "##page no-2.33\n", "##example2.29\n", "print(\"Applying KCL to node 1:\");\n", "print(\"4*V1-2*V2-V3 = -24\");##equation 1\n", "print(\"Applying KCL to node 2:\");\n", "print(\"-50*V1+71*V2-20*V3 = 0\");##equation 2\n", "print(\"Applying KCL to node 3:\");\n", "print(\"-5V1-4*V2 +10*V3 = 180\");##equation 3\n", "print(\"Solving equations 1,2 and 3\");##solving equations in matrix form\n", "A=numpy.matrix([[4, -2, -1],[-50 ,71 ,-20],[-5, -4 ,10]]);\n", "B=numpy.matrix([[-24], [0], [180]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"V1= 6.35 V\");\n", "print(\"V2= 11.76 V\");\n", "print(\"V3= 25.88 V\");\n", "x=25.88;\n", "y=11.76;\n", "z=(x-y);\n", "print'%s %.2f %s'%(\"\\ncurrent through the 5 ohm resistor = V3-V2/5 = \",z,\" A\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node 1:\n", "4*V1-2*V2-V3 = -24\n", "Applying KCL to node 2:\n", "-50*V1+71*V2-20*V3 = 0\n", "Applying KCL to node 3:\n", "-5V1-4*V2 +10*V3 = 180\n", "Solving equations 1,2 and 3\n", "[matrix([[ 6.35294118],\n", " [ 11.76470588],\n", " [ 25.88235294]])]\n", "V1= 6.35 V\n", "V2= 11.76 V\n", "V3= 25.88 V\n", "\n", "current through the 5 ohm resistor = V3-V2/5 = 14.12 A\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex30-pg2.34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.34\n", "##example2.30\n", "import numpy\n", "print(\"Applying KCL to node 1:\");\n", "print(\"8*V1-V2 = 50\");##equation 1\n", "print(\"Applying KCL to node 2:\");\n", "print(\"-2*V1+11*V2 = -500\");##equation 2\n", "print(\"Solving equations 1 and 2\");##solving equations in matrix form\n", "A=([[8, -1],[-2, 17]]);\n", "B=([[50] ,[-500]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"V1= 2.61 V\");\n", "print(\"V2=-29.1 V\");\n", "x=2.61;\n", "y=-29.1;\n", "I1=-x/2.;\n", "I2=(x-y)/10.;##current through 10 Ohm resistor\n", "I3=(y+50)/2.;##50 volts is the supply to the circuit\n", "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nI1= \",I1,\" A\" and \"\\nI2= \",I2,\"A\" and \" \\nI3= \",I3,\" A\");\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node 1:\n", "8*V1-V2 = 50\n", "Applying KCL to node 2:\n", "-2*V1+11*V2 = -500\n", "Solving equations 1 and 2\n", "[array([[ 2.6119403 ],\n", " [-29.10447761]])]\n", "V1= 2.61 V\n", "V2=-29.1 V\n", "\n", "I1= -1.30 \n", "I2= 3.17 \n", "I3= 10.45 A \n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex31-pg2.34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.34\n", "##example2.31\n", "import numpy\n", "print(\"Applying KCL to node a:\");\n", "print(\"0.5*Va-0.2*Vb = 34.2\");#equation 1\n", "print(\"Applying KCL to node b:\");\n", "print(\"0.1*Va-0.4*Vb = -32.4\");##equation 2\n", "print(\"Solving equations 1 and 2\");##solving equations in matrix form\n", "A=numpy.matrix([[0.5,0.2],[0.1, -0.4]]);\n", "B=numpy.matrix([[34.2], [-32.4]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"Va= 112 V\");\n", "print(\"Vb= 109 V\");\n", "x=112.;\n", "y=109.;\n", "I1=(120.-x)/0.2;\n", "I2=(x-y)/0.3;\n", "I3=(110-y)/0.1;\n", "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nI1=\",I1,\" A \" and \"\\nI2= \",I2,\" A\" and \" \\nI3= \",I3,\" A\");\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node a:\n", "0.5*Va-0.2*Vb = 34.2\n", "Applying KCL to node b:\n", "0.1*Va-0.4*Vb = -32.4\n", "Solving equations 1 and 2\n", "[matrix([[ 32.72727273],\n", " [ 89.18181818]])]\n", "Va= 112 V\n", "Vb= 109 V\n", "\n", "I1= 40.00 \n", "I2= 10.00 \n", "I3= 10.00 A \n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex32-pg2.35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.35\n", "##example2.35\n", "import numpy\n", "print(\"Applying KCL to node 1:\");\n", "print(\"V1 = 50\");##equation 1\n", "print(\"Applying KCL to node 2:\");\n", "print(\"-2*V1+17*V2 = 50\");#equation 2\n", "print(\"Solving equations 1 and 2\");##solving equations in matrix form\n", "A=([[1, 0],[-2, 17]]);\n", "B=([[50] ,[50]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"V1= 50 V\");\n", "print(\"V2= 8.82 V\");\n", "x=8.82;\n", "y=(x/10.);\n", "print'%s %.2f %s'%(\"\\ncurrent in the 10-Ohm resistor =V2/10 =\",y,\" A\");\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node 1:\n", "V1 = 50\n", "Applying KCL to node 2:\n", "-2*V1+17*V2 = 50\n", "Solving equations 1 and 2\n", "[array([[ 50. ],\n", " [ 8.82352941]])]\n", "V1= 50 V\n", "V2= 8.82 V\n", "\n", "current in the 10-Ohm resistor =V2/10 = 0.88 A\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex33-pg2.36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.36\n", "##example2.33\n", "import numpy\n", "print(\"Applying KCL to node a:\");\n", "print(\"6*Va-5*Vb = -20\");##equation 1\n", "print(\"Applying KCL to node b:\");\n", "print(\"-10*Va+17*Vb-5*Vc = 0\");##equation 2\n", "print(\"At node c\");\n", "print(\"Vc = 20\");\n", "print(\"Solving equations 1,2 and 3\");##solving equations in matrix form\n", "A=numpy.matrix([[6 ,-5 ,0],[-10 ,17 ,-5],[0, 0, 1]]);\n", "B=numpy.matrix([[-20], [0] ,[20]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"Va= 3.08 V\");\n", "print(\"Vb= 7.69 V\");\n", "x=3.08;\n", "y=7.69;\n", "z=20.;\n", "Va = x-y;\n", "Vb = y-z;\n", "print'%s %.2f %s %.2f %s '%(\"\\nV1 = Va-Vb = \",Va,\"V\" and \"\\nV2 = Vb-Vc = \",Vb,\" V\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node a:\n", "6*Va-5*Vb = -20\n", "Applying KCL to node b:\n", "-10*Va+17*Vb-5*Vc = 0\n", "At node c\n", "Vc = 20\n", "Solving equations 1,2 and 3\n", "[matrix([[ 3.07692308],\n", " [ 7.69230769],\n", " [ 20. ]])]\n", "Va= 3.08 V\n", "Vb= 7.69 V\n", "\n", "V1 = Va-Vb = -4.61 \n", "V2 = Vb-Vc = -12.31 V \n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex34-pg2.37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.37\n", "##example2.334\n", "import math\n", "import numpy\n", "print(\"At node A:\");\n", "print(\"VA = 60\");##equation 1\n", "print(\"Applying KCL to node B:\");\n", "print(\"-VA+3*VB-VC = 12\");##equation 2\n", "print(\"Applying KCL to node C:\");\n", "print(\"-2*VA-5*VB+10*VC\");##equation 3\n", "print(\"Solving equations 1,2 and 3\");##solving equations in matrix \n", "A=numpy.matrix([[1 ,0 ,0],[-1 ,3 ,-1],[-2 ,-5 ,10]]);\n", "B=numpy.matrix([[60], [12], [24]])\n", "X=numpy.dot(numpy.linalg.inv(A),B)\n", "print[X];\n", "print(\"VC= 31.68 V\");\n", "print(\"Voltage across the 100 Ohm resistor = 31.68 V\");\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "At node A:\n", "VA = 60\n", "Applying KCL to node B:\n", "-VA+3*VB-VC = 12\n", "Applying KCL to node C:\n", "-2*VA-5*VB+10*VC\n", "Solving equations 1,2 and 3\n", "[matrix([[ 60. ],\n", " [ 34.56],\n", " [ 31.68]])]\n", "VC= 31.68 V\n", "Voltage across the 100 Ohm resistor = 31.68 V\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex35-pg2.38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.38\n", "##example2.35\n", "import math\n", "import numpy\n", "print(\"Applying KCL to node 1:\");\n", "print(\"2.5*V1-0.5*V2 = 5\");##equation 1\n", "print(\"Applying KCL to node 2:\");\n", "print(\"V1-V2 = 0\");##equation 2\n", "print(\"Solving equations 1 and 2\");##solving equations in matrix form\n", "A=numpy.matrix([[2.5, -0.5],[1 ,-1]]);\n", "B=numpy.matrix([[5] ,[0]])\n", "X=numpy.dot(numpy.linalg.inv(A),B);\n", "print[X];\n", "print(\"V1= 2.5 V\");\n", "print(\"V2=-2.5 V\");\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node 1:\n", "2.5*V1-0.5*V2 = 5\n", "Applying KCL to node 2:\n", "V1-V2 = 0\n", "Solving equations 1 and 2\n", "[matrix([[ 2.5],\n", " [ 2.5]])]\n", "V1= 2.5 V\n", "V2=-2.5 V\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex37-pg2.39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.39\n", "##example2.37\\\n", "import math\n", "import numpy\n", "print(\"Applying KCL to node 1:\");\n", "print(\"2*V1+17*V2 = 0\")##equation 1\n", "print(\"Applying KCL to node 2:\");\n", "print(\"V1+6V2 = 0\");##equation 2\n", "print(\"Solving equations 1 and 2\")##solving equations in matrix form\n", "A=numpy.matrix([[2 ,17],[1, 6]]);\n", "B=numpy.matrix([[0], [0]])\n", "X=numpy.dot(numpy.linalg.inv(A),B)\n", "print(X);\n", "print(\"V1= 0 V\");\n", "print(\"V2= 0 V\");\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node 1:\n", "2*V1+17*V2 = 0\n", "Applying KCL to node 2:\n", "V1+6V2 = 0\n", "Solving equations 1 and 2\n", "[[ 0.]\n", " [ 0.]]\n", "V1= 0 V\n", "V2= 0 V\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex38-pg2.40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.40\n", "##example2.38\n", "import numpy\n", "import math\n", "print(\"Applying KCL to node a:\");\n", "print(\"2*Va-0.5*Vb-0.5*Vc = 5\");##equation 1\n", "print(\"Applying KCL to node b:\");\n", "print(\"-3/2*Va+5/6*Vb+2/3*Vc = -1\");##equation 2\n", "print(\"Applying KCL to node c:\");\n", "print(\"1/2*Va+1/3*Vb-31/30*Vc = -1\");##equation 3\n", "print(\"Solving equations 1,2 and 3\");##solving equations in matrix form\n", "A=numpy.matrix([[2, -0.5, -0.5],[-3/2, 5/6, 2/3],[0.5 ,1/3 ,-31/30 ]]);\n", "B=numpy.matrix([[5], [-1], [0]])\n", "X=numpy.dot(numpy.linalg.inv(A),B)\n", "print[X];\n", "\n", "print(\"Va= 4.303 V\");\n", "print(\"Vb= 3.87 V\");\n", "print(\"Vc= 3.33 V\");\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KCL to node a:\n", "2*Va-0.5*Vb-0.5*Vc = 5\n", "Applying KCL to node b:\n", "-3/2*Va+5/6*Vb+2/3*Vc = -1\n", "Applying KCL to node c:\n", "1/2*Va+1/3*Vb-31/30*Vc = -1\n", "Solving equations 1,2 and 3\n", "[matrix([[ 0.5 ],\n", " [-8.125],\n", " [ 0.125]])]" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Va= 4.303 V\n", "Vb= 3.87 V\n", "Vc= 3.33 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex39-pg2.41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.41\n", "##example2.39\n", "import math\n", "import numpy\n", "print(\"from the figure\");\n", "print(\"V4= 40 V\");##equation 1\n", "print(\"nodes 2 and 3 form suoernode:\");\n", "print(\"V1-2*V2+V3 = 0\");##equation 2\n", "print(\"Applying KCL to node 1:\");\n", "print(\"7/15*V1-1/5*V2 = 2/3\");##equation 3\n", "print(\"Applying KCL to supernode :\");\n", "print(\"-23/30*V1 +83/60*V3 = 20\");##equation 4\n", "print(\"Solving equations 1,2,3 and 4\");##solving equations in matrix form\n", "A=numpy.matrix([[0, 0 ,0 ,1],[1 ,-2 ,1 ,0],[7/15 ,-1/5, 0, 0],[-23/30, 83/60, 0 ,0]]);\n", "B=numpy.matrix([[40] ,[0], [2/3], [20]])\n", "X=numpy.dot(numpy.linalg.inv(A),B)\n", "print[X];\n", "print(\"V1= 10 V\");\n", "print(\"V2= 20 V\");\n", "print(\"V3= 30 V\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from the figure\n", "V4= 40 V\n", "nodes 2 and 3 form suoernode:\n", "V1-2*V2+V3 = 0\n", "Applying KCL to node 1:\n", "7/15*V1-1/5*V2 = 2/3\n", "Applying KCL to supernode :\n", "-23/30*V1 +83/60*V3 = 20\n", "Solving equations 1,2,3 and 4\n", "[matrix([[-20.],\n", " [ 0.],\n", " [ 20.],\n", " [ 40.]])]\n", "V1= 10 V\n", "V2= 20 V\n", "V3= 30 V\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex40-pg2.42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Network Theorem 1\n", "##page no-2.42\n", "##example2.40\n", "import math\n", "import numpy\n", "print(\"selecting central node as reference node\");\n", "print(\"V1= -12 V\");##equation 1\n", "print(\"Applying KCL at node 1:\");\n", "print(\"-2*V1+2.5*V2-0.5V3 = 14\");##equation 2\n", "print(\"nodes 3 and 4 form a supernode\");\n", "print(\"0.2*V1+V3-1.2*V4 = 0\");##equation 3\n", "print(\"Applying KCL to supernode :\");\n", "print(\"0.1*V1-V2+0.5*V3+1.4*V4 = 0\");##equation 4\n", "print(\"Solving equations 1,2,3 and 4\");##solving equations in matrix form\n", "A=numpy.matrix([[1, 0, 0 ,0],[-2 ,2.5 ,-0.5 ,0],[0.2 ,0 ,1, -1.2],[0.1 ,-1 ,0.5, 1.4]]);\n", "B=numpy.matrix([[-12], [14] ,[0],[0]])\n", "X=numpy.dot(numpy.linalg.inv(A),B)\n", "print[X];\n", "print(\"V1= -12 V\");\n", "print(\"V2= -4 V\");\n", "print(\"V3= 0\");\n", "print(\"V4= -2 V\");\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "selecting central node as reference node\n", "V1= -12 V\n", "Applying KCL at node 1:\n", "-2*V1+2.5*V2-0.5V3 = 14\n", "nodes 3 and 4 form a supernode\n", "0.2*V1+V3-1.2*V4 = 0\n", "Applying KCL to supernode :\n", "0.1*V1-V2+0.5*V3+1.4*V4 = 0\n", "Solving equations 1,2,3 and 4\n", "[matrix([[ -1.20000000e+01],\n", " [ -4.00000000e+00],\n", " [ 4.44089210e-16],\n", " [ -2.00000000e+00]])]\n", "V1= -12 V\n", "V2= -4 V\n", "V3= 0\n", "V4= -2 V\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }