{ "metadata": { "name": "", "signature": "sha256:1c4ac592513e221d9ef582b6b080c90b8d233dba2c2d1c00437e9fe2319c3d83" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5 : Three Phase Synchronous Machines" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1 Page No : 424" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data; \n", "slots = 18.;\n", "p = 2.; #nmber of poles\n", "ph = 3.; #three phase winding\n", "\n", "# Calculations and Results\n", "SA = (360/slots); #slot angle\n", "m = slots/(p*ph); #m = nmber of slots per pole per phase\n", "print \"number of slots per pole per phase, m = %d\"%(m);\n", "print \"emfs of the oils of each phase will have a time-phase difference of %d degree mechanical \"%(SA);\n", "k_d = math.sin(math.radians((m*SA)/2))/(m*math.sin(math.radians(SA/2)));\n", "print \"distribution factor = %f\"%(k_d);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number of slots per pole per phase, m = 3\n", "emfs of the oils of each phase will have a time-phase difference of 20 degree mechanical \n", "distribution factor = 0.959795\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2 Page No : 425" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "# Given Data\n", "slots = 36.; #number of slots\n", "poles = 4.; #number of poles\n", "ph = 3.; #math.single layer three phase winding\n", "\n", "# Calculations and Results\n", "SP = slots/ph; #number of slots per phase\n", "print \"number of slots per phase = %d\"%(SP);\n", "m = SP/poles; #munber of slots per pole per phase\n", "print \"number of slots per pole per phase, m = %d\"%(m)\n", "SA_m = 360/slots; #slot angle mechanical\n", "SA_e = (poles/2)*SA_m #slot angle electrical \n", "print \"slot angle = %d degree electrical\"%(SA_e)\n", "k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n", "print \"distribution factor = %f\"%(k_d)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number of slots per phase = 12\n", "number of slots per pole per phase, m = 3\n", "slot angle = 20 degree electrical\n", "distribution factor = 0.959795\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3 Page No : 426" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data;\n", "slots = 48.; #number of slots\n", "poles = 4.; #4-pole machine\n", "ph = 3.; #3-phase machine\n", "\n", "# Calculations and Results\n", "SA = 360/slots; #slot angle\n", "print \"total number of slots = %d\"%(slots);\n", "print \"slot angle = %f degree mechanical\"%(SA);\n", "#coil span is 11 slot pitches\n", "#12 slots subtend 180degress, short pitched by 1 slot \n", "Bta = 1*180./12;\n", "k_p = math.cos(math.radians(Bta/2));\n", "print \"pitch factor = %f\"%(k_p)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "total number of slots = 48\n", "slot angle = 7.500000 degree mechanical\n", "pitch factor = 0.991445\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4 Page No : 426" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data;\n", "slots = 72.; #number of slots\n", "P = 8.; #number of poles\n", "ph = 3.; #3-phase machine\n", "N = 750.; #speed of machine in rpm\n", "\n", "#winding is made with 36 coils having 10 turns\n", "Fp = 0.15; #flux per pole\n", "fre = (P*N)/120;\n", "NCp = 36./ph; #nmber of coils per phase\n", "T = NCp*10; #number of turns per phase\n", "k_p = 1; #math.since full pitched pitch factor is 1\n", "\n", "# Calculations and Results\n", "print \"flux per pole = %fWb\"%(Fp)\n", "print \"number of turns per phase = %d\"%(T);\n", "print \"pitch factor = %f\"%(k_p);\n", "m = slots/(P*ph); #slots per pole per phase\n", "SA_m = 360/slots; #slot angle mechanical\n", "SA_e = (P/2)*SA_m;\n", "k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n", "print \"distribution factor = %f\"%(k_d);\n", "E = 4.44*Fp*fre*T*k_d*k_p;\n", "print \"RMS vale of emf induced per phase = %fV\"%(E)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "flux per pole = 0.150000Wb\n", "number of turns per phase = 120\n", "pitch factor = 1.000000\n", "distribution factor = 0.959795\n", "RMS vale of emf induced per phase = 3835.341142V\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.5 Page No : 427" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "# Given Data;\n", "print (\"E(line to line) = 440V\");\n", "E_l = 440.; #line-to-line voltage\n", "E_p = E_l/(math.sqrt(3));\n", "N = 750.; #speed in rpm\n", "fre = 50.; #frequency\n", "\n", "# Calculations and Results\n", "P = (120*fre)/N;\n", "print \"P = %d\"%(P);\n", "print \"Eper phase) = %dV\"%(E_p);\n", "ph = 3; #3-phase machine\n", "m = 2; #number of slots per pole per phase\n", "slots = m*P*ph; #total number of stator slots\n", "SA_m = 360/slots; #slot angle mechanical\n", "SA_e = (P/2)*SA_m; #slot angle electrical\n", "k_p = 1; #assuming full pitch\n", "print \"slot angle = %d degree electrical\"%(SA_e);\n", "print \"pitch factor = %f\"%(k_p);\n", "k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n", "print \"distribution factor = %f\"%(k_d);\n", "#2 slots per pole per phase\n", "NSp = 2*P; #number of slots per phase\n", "NTc = 4; #number of turns per coil\n", "T = 8*NTc; #number of turns per phase\n", "Fp = E_p/(4.44*fre*T*k_d*k_p);\n", "print \"flux per pole = %fWb\"%(Fp);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "E(line to line) = 440V\n", "P = 8\n", "Eper phase) = 254V\n", "slot angle = 30 degree electrical\n", "pitch factor = 1.000000\n", "distribution factor = 0.965926\n", "flux per pole = 0.037021Wb\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6 Page No : 428" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#chapter 5\n", "#example 5.6\n", "#page 428\n", "\n", "# Given Data;\n", "slots = 144.; #number of slots\n", "ph = 3.; #3-phase machine\n", "P = 16.; #number of poles\n", "Cp = 10.; #number of conducters per slot\n", "Fp = 0.03; #flux per pole\n", "Ns = 375.; #synchronous speed\n", "\n", "# Calculations and Results\n", "fre = (Ns*P)/120; #frequency\n", "print \"frequency = %d\"%(fre);\n", "m = slots/(P*ph); #number of slots per pole per phase\n", "print \"number of slots per pole per phase, m = %d\"%(m);\n", "SA_m = 360/slots; #slot angle mechanical\n", "SA_e = (P/2)*SA_m; #slot angle electrical\n", "k_p = 1 #no short pitching\n", "print \"short pitch = %d\"%(k_p);\n", "k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n", "print \"distribution factor = %f\"%(k_d);\n", "T = (slots*10)/(2*ph);\n", "print \"number of turns per phase, T = %d\"%(T);\n", "E = 4.44*Fp*fre*T*k_d*k_p;\n", "print \"RMS value of induced emf per phase, E = %fV\"%(E);\n", "print \"induced emf across the linesis %fV \"%(math.sqrt(3)*E);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency = 50\n", "number of slots per pole per phase, m = 3\n", "short pitch = 1\n", "distribution factor = 0.959795\n", "number of turns per phase, T = 240\n", "RMS value of induced emf per phase, E = 1534.136457V\n", "induced emf across the linesis 2657.202289V \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7 Page No : 428" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data;\n", "slots = 90.; #number of slots\n", "P = 10.; #number of poles\n", "ph = 3.; #3-phase machine\n", "fre = 50.; #frequency\n", "Fp = 0.16; #flux per pole\n", "E_l = 11000.; #line voltage\n", "SA_m = 360/slots; #machanical slot angle\n", "\n", "# Calculations and Results\n", "SA_e = (P/2)*SA_m; #electrical slot angle\n", "m = slots/(ph*P);\n", "print \"slot angle = %d degree elecrical\"%(SA_e)\n", "print \"number of slots per pole per phase, m = %d\"%(m);\n", "k_p = 1; #assuming full pitch\n", "print \"pitch factor = %d\"%(k_p);\n", "k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n", "print \"distribution factor = %f\"%(k_d);\n", "E_p = E_l/math.sqrt(3);\n", "T = E_p/(4.44*Fp*fre*k_p*k_d); \n", "print \"total number of armature conductors, Z = %d\"%(2*T);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "slot angle = 20 degree elecrical\n", "number of slots per pole per phase, m = 3\n", "pitch factor = 1\n", "distribution factor = 0.959795\n", "total number of armature conductors, Z = 372\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.8 Page No : 429" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data;\n", "print (\"P = 6 , f = 50\");\n", "P = 6.;\n", "f = 50.;\n", "Sp = 12.; #slots per pole\n", "Cs = 4.; #conductors per slot\n", "Fp = 1.5; \n", "\n", "# Calculations and Results\n", "TS = Sp*P \n", "print \"total number of slots = %d\"%(TS);\n", "print \"total number of slots per phase = %d\"%( TS/3);\n", "print \"total number of conductors per phase = %d\"%(( TS*Cs)/3);\n", "T = ((TS*Cs)/3)/2;\n", "print \"total number of turns per phase = %d\"%(T)\n", "m = (TS/(P*3));\n", "print \"number of slots per pole per phase, m = %d\"%(m);\n", "SA_m = 360/TS; #slot angle mechanical\n", "SA_e = (P/2)*SA_m;\n", "k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n", "print \"distribution factor = %f\"%(k_d);\n", "print (\"coil pitch is 5/6 of full-pitch\");\n", "bheta = 180-(5./6)*180; #short pitch angle\n", "print \"short pitch angle = %d degrees\"%(bheta)\n", "k_p = math.cos(math.radians(bheta/2));\n", "print \"pitch factor = %f \"%(k_p);\n", "E = 4.44*Fp*f*T*k_d*k_p;\n", "print \"induced per phase = %fV\"%(E)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "P = 6 , f = 50\n", "total number of slots = 72\n", "total number of slots per phase = 24\n", "total number of conductors per phase = 96\n", "total number of turns per phase = 48\n", "number of slots per pole per phase, m = 4\n", "distribution factor = 0.957662\n", "coil pitch is 5/6 of full-pitch\n", "short pitch angle = 30 degrees\n", "pitch factor = 0.965926 \n", "induced per phase = 14785.689892V\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.9 Page No : 439" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data;\n", "OP = 500000.; #output power\n", "V_l = 3300.; #line voltage\n", "\n", "# Calculations and Results\n", "I_l = OP/(math.sqrt(3)*V_l); #line current\n", "print \"line current = %fA\"%(I_l);\n", "#for star connected alternater, line current is equal to phase current\n", "I_a = I_l;\n", "pf = 0.8; #power factor\n", "phi = math.degrees(math.acos(pf));\n", "R_a = 0.3; #synchronous resistance\n", "X_s = 4; #synchronous reactance\n", "V_p = V_l/math.sqrt(3);\n", "print \"phase voltage = %fV\"%(V_p)\n", "E = math.sqrt((V_p*math.cos(math.radians(phi))+I_a*R_a)**2+(V_p*math.sin(math.radians(phi))+I_a*X_s)**2);\n", "print \"induced emf = %f V/Phase\"%(E )\n", "PR = ((E-V_p)*100)/V_p;\n", "print \"percentage regulation = %f percent\"%(PR);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "line current = 87.477314A\n", "phase voltage = 1905.255888V\n", "induced emf = 2152.469556 V/Phase\n", "percentage regulation = 12.975353 percent\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.10 Page No : 440" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data\n", "V = 2000.;\n", "V_oc = 500.; #open circuit voltage\n", "I_sc = 100.; #short circuit current\n", "I_a = 100.; \n", "R_s = 0.8; #armature resistance\n", "\n", "# Calculations and Results\n", "Z_s = V_oc/I_sc; #synchronous impedence\n", "print \"Z_s = %d ohm\"%(Z_s);\n", "X_s = math.sqrt(Z_s**2-R_s**2);\n", "print \"X_s = %f ohm\"%(X_s);\n", "pf = 1;\n", "phi = math.degrees(math.acos(pf));\n", "print (\"At unity power factor\");\n", "print \"\";\n", "E = math.sqrt((V*math.cos(math.radians(phi))+I_a*R_s)**2+(V*math.sin(math.radians(phi))+I_a*X_s)**2);\n", "print \"induced emf = %fV\"%(E);\n", "R = ((E-V)*100)/V;\n", "print \"regulation = %f percent\"%(R);\n", "pf = 0.71;\n", "phi = math.degrees(math.acos(pf));\n", "print (\"At 0.71 lagging power factor\");\n", "print \"\";\n", "E = math.sqrt((V*math.cos(math.radians(phi))+I_a*R_s)**2+(V*math.sin(math.radians(phi))+I_a*X_s)**2);\n", "print \"induced emf = %fV\"%(E);\n", "R = ((E-V)*100)/V;\n", "print \"regulation = %fpercent\"%(R);\n", "pf = 0.8;\n", "phi = math.degrees(math.acos(pf));\n", "print (\"At 0.8 leading power factor\");\n", "print \"\";\n", "E = math.sqrt((V*math.cos(math.radians(phi))+I_a*R_s)**2+(V*math.sin(math.radians(phi))-I_a*X_s)**2);\n", "print \"induced emf = %fV\"%(E);\n", "R = ((E-V)*100)/V;\n", "print \"regulation = %fpercent\"%(R);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Z_s = 5 ohm\n", "X_s = 4.935585 ohm\n", "At unity power factor\n", "\n", "induced emf = 2137.755833V\n", "regulation = 6.887792 percent\n", "At 0.71 lagging power factor\n", "\n", "induced emf = 2422.283821V\n", "regulation = 21.114191percent\n", "At 0.8 leading power factor\n", "\n", "induced emf = 1822.487197V\n", "regulation = -8.875640percent\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.11 Page No : 441" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Given Data;\n", "print (\"field exitation current = 10A\");\n", "V_oc = 900.; #induced emf on open circuit\n", "I_sc = 150.; #short circuit current\n", "\n", "# Calculations and Results\n", "Z_s = V_oc/I_sc; #synchronous impedence\n", "print \"synchronous impedence, Z_s = %d ohm\"%(Z_s);\n", "I_a = 60;\n", "print \"internal voltage drop when the load current is 60amp = %d V\"%(I_a*Z_s);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "field exitation current = 10A\n", "synchronous impedence, Z_s = 6 ohm\n", "internal voltage drop when the load current is 60amp = 360 V\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12 Page No : 441" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data;\n", "KVA = 2000.;\n", "V = 6600.; #rating\n", "V_p = 6600./math.sqrt(3);\n", "I_a = (KVA*1000)/(math.sqrt(3)*V);\n", "R_a = 0.4; #armature resistance\n", "X_s = 4.5 #synchronous reactance\n", "pf = 0.8;\n", "\n", "# Calculations and Results\n", "phi = math.degrees(math.acos(pf));\n", "print \"V/phase = %dV \"%(V_p)\n", "E = math.sqrt((V_p*math.cos(math.radians(phi))+I_a*R_a)**2+(V_p*math.sin(math.radians(phi))+I_a*X_s)**2)\n", "print \"E = %f V per phase\"%(E);\n", "R = ((E-V_p)*100)/V_p;\n", "print \"percentage change in terminal voltage = %f percent\"%(R);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "V/phase = 3810V \n", "E = 4378.515597 V per phase\n", "percentage change in terminal voltage = 14.906234 percent\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.13 Page No : 442" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data;\n", "KVA = 1200.; #output power\n", "print \"output power = %d\"%(KVA)\n", "V_l = 3300.; #line voltage\n", "R_a = 0.25; #armature resistance\n", "\n", "# Calculations and Results\n", "I_l = (KVA*1000)/(math.sqrt(3)*V_l); #line current\n", "#for star connected I_l = I_a\n", "I_a = I_l;\n", "V_p = V_l/math.sqrt(3);\n", "print \"V per phase = %dV\"%(V_p)\n", "#field current of 40A produces short circuit current of 200A and open circuit emf 1100\n", "v_l = 1100;\n", "i_s = 200;\n", "Z_s = v_l/(math.sqrt(3)*i_s); #synchronous impedence\n", "print \"Synchronous impedance, Zs = %f ohm\"%(Z_s)\n", "X_s = math.sqrt(Z_s**2-R_a**2); #synchronous reactance\n", "print (\"(a)for 0.8 lagging power facor\");\n", "pf = 0.8;\n", "phi = math.degrees(math.acos(pf));\n", "E = math.sqrt((V_p*math.cos(math.radians(phi))+I_a*R_a)**2+(V_p*math.sin(math.radians(phi))+I_a*X_s)**2)\n", "print \"induced emf, E = %f V\"%(E);\n", "R = ((E-V_p)*100)/V_p;\n", "print \"regulation = %f percent\"%(R);\n", "pf = 0.8;\n", "phi = math.degrees(math.acos(pf));\n", "print (\"(b)For leading power factor load\")\n", "E = math.sqrt((V_p*math.cos(math.radians(phi))+I_a*R_a)**2+(V_p*math.sin(math.radians(phi))-I_a*X_s)**2)\n", "print \"induced emf, E = %f V\"%(E);\n", "R = ((E-V_p)*100)/V_p;\n", "print \"regulation = %f percent\"%(R);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "output power = 1200\n", "V per phase = 1905V\n", "Synchronous impedance, Zs = 3.175426 ohm\n", "(a)for 0.8 lagging power facor\n", "induced emf, E = 2398.732590 V\n", "regulation = 25.900810 percent\n", "(b)For leading power factor load\n", "induced emf, E = 1647.716860 V\n", "regulation = -13.517293 percent\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.14 Page No : 443" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data;\n", "print (\"star connected alternator\")\n", "KVA = 1500.; #rating\n", "ph = 3.; #3-phase\n", "V_l = 6600.; #voltage\n", "Ra = 0.4 #armature resistance\n", "Xs = 6.; #reactance\n", "\n", "# Calculations and Results\n", "Ia = (KVA*1000)/(math.sqrt(3)*V_l);\n", "print \"Full-load current = %d A\"%(Ia);\n", "V = V_l/math.sqrt(3);\n", "print \"Voltage per phase = %d V\"%(V);\n", "print (\"for 0.8 lagging power facor\");\n", "pf = 0.8; #power factor\n", "phi = math.degrees(math.acos(pf));\n", "E = math.sqrt((V*math.cos(math.radians(phi))+Ia*Ra)**2+(V*math.sin(math.radians(phi))+Ia*Xs)**2)\n", "print \"induced emf = %f V\"%(E);\n", "print (\"then at 0.8 leading power factor\");\n", "Vt = 4743; #solved manually \n", "print \"termial Voltage, line-to-line = %d V\"%(math.sqrt(3)*Vt)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "star connected alternator\n", "Full-load current = 131 A\n", "Voltage per phase = 3810 V\n", "for 0.8 lagging power facor\n", "induced emf = 4366.072552 V\n", "then at 0.8 leading power factor\n", "termial Voltage, line-to-line = 8215 V\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.15 Page No : 450" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#chapter 5\n", "#example 5.15\n", "#page 450\n", "\n", "# Given Data;\n", "L = 8000.; #load\n", "La = 5000.;\n", "pf = 0.8;\n", "\n", "# Calculations and Results\n", "phi = math.degrees(math.acos(pf));\n", "print \"math.tan phi = %f\"%(math.degrees(math.atan(phi)));\n", "print (\"FOR ALTERNATOR A\");\n", "pf_a = 0.9;\n", "phi_a = math.degrees(math.acos(pf_a));\n", "print \"math.tan phi_a = %f\"%(math.degrees(math.atan(phi_a)));\n", "print (\"reactive load = active load*math.tan phi\");\n", "print (\"Active load = 8000kW\");\n", "print \"reactive load = %d KVAr\"%(8000*math.degrees(math.atan(phi_a)));\n", "print (\"Active Load A = 5000kW\");\n", "print \"Reactive load A = %dkVAr\"%(5000*math.degrees(math.atan(phi_a)));\n", "print \"Active load of B = %dkW\"%(L-La);\n", "a = ((8000*math.degrees(math.atan(phi)))-(5000*math.degrees(math.atan(phi_a))))\n", "print \"Reactive load of B = %dkVAr\"%(a);\n", "B = a/(L-La);\n", "phi_b = math.degrees(math.atan(B));\n", "print \"phi_b = %f\"%(phi_b)\n", "print \"Power Factor of B = %f\"%(math.cos(math.radians(phi_b)));" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "math.tan phi = 88.446382\n", "FOR ALTERNATOR A\n", "math.tan phi_a = 87.783943\n", "reactive load = active load*math.tan phi\n", "Active load = 8000kW\n", "reactive load = 702271 KVAr\n", "Active Load A = 5000kW\n", "Reactive load A = 438919kVAr\n", "Active load of B = 3000kW\n", "Reactive load of B = 268651kVAr\n", "phi_b = 89.360211\n", "Power Factor of B = 0.011166\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.16 Page No : 451" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given Data\n", "V = 6600.;\n", "ph = 3.; #3-phase alternators \n", "power = 10000.; #total load\n", "\n", "# Calculations and Results\n", "print (\"Two alternators in parallel connection\");\n", "pf = 0.8;\n", "Ia = 438; #armature current\n", "Il = (power*1000)/(math.sqrt(3)*V*pf); #load current\n", "print \"load current = %fA\"%(Il);\n", "phi = math.degrees(math.acos(pf));\n", "Ac = (Il*math.cos(math.radians(phi)));\n", "Rc = (Il*math.sin(math.radians(phi)));\n", "print \"Active component of current = %fA\"%(Ac);\n", "print \"Reactive component of current = %fA\"%(Rc);\n", "print \"Current supplied by each alternator = %fA\"%(Il/2);\n", "print \"Active component of current supplied by each alternator = %fA\"%(Ac/2);\n", "print \"Reactive component of current supplied by each alternator = %fA\"%(Rc/2);\n", "print (\"Since steam supply is same,the active component remain the same \");\n", "RIl = math.sqrt(Ia**2-(Ac/2)**2);\n", "print \"Reactive component of Il = %dA\"%(RIl);\n", "RI2 = (Rc-RIl);\n", "print \"reactive component of I2 = %fA\"%(RI2);\n", "I2 = math.sqrt((Ac/2)**2+(RI2)**2);\n", "print \" I2 = %fA\"%(I2);\n", "phi_2 = math.degrees(math.atan(RI2/(Ac/2)));\n", "print \"phi 2 = %f degrees\"%(phi_2);\n", "print \"math.cos phi 2 = %f\"%(math.cos(math.radians(phi_2)));\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Two alternators in parallel connection\n", "load current = 1093.466419A\n", "Active component of current = 874.773135A\n", "Reactive component of current = 656.079851A\n", "Current supplied by each alternator = 546.733209A\n", "Active component of current supplied by each alternator = 437.386568A\n", "Reactive component of current supplied by each alternator = 328.039926A\n", "Since steam supply is same,the active component remain the same \n", "Reactive component of Il = 23A\n", "reactive component of I2 = 632.906796A\n", " I2 = 769.336091A\n", "phi 2 = 55.352588 degrees\n", "math.cos phi 2 = 0.568525\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.17 Page No : 455" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "# Given Data;\n", "print (\"power factor of existing load is 0.8 lagging\");\n", "pf = 0.8; #power factor\n", "\n", "# Calculations and Results\n", "phi = math.degrees(math.acos(pf));\n", "print \"phi = %d degree\"%(phi);\n", "L = 800.; #load\n", "kVAr1 = (L*math.degrees(math.atan(phi)));\n", "print \"kVAr1 = %d \"%(kVAr1);\n", "print (\"output for the synchronous motor is 200kW\");\n", "output = 200.;\n", "efficiency = 0.9;\n", "kW = (output/efficiency);\n", "print \"Input to the synchronous motor = %fkW\"%(kW);\n", "TL = (L+kW); # total load\n", "print \"Total load on the system = %fkW\"%(TL);\n", "print (\"overall power factor of the load is to be raised to 0.92 lagging\");\n", "pf = 0.92;\n", "phi = math.degrees(math.acos(pf));\n", "kVAr2 = (TL*math.degrees(math.atan(phi)))\n", "print \"kVAr2 = %f\"%(kVAr2);\n", "kVAr = kVAr1-kVAr2;\n", "print \"lagging kVAr of synchronous codenser = %f\"%(kVAr);\n", "print \"leading kVAr supplied by the motor = %f\"%(kVAr);\n", "phi = math.degrees(math.atan(kVAr/kW));\n", "print \"phi = %d degree\"%(phi);\n", "print \"Power factor of the synchronos motor = %f leading \"%(math.cos(math.radians(phi)));\n", "print \"KVA rating of the synchronous motor = %f\"%(kW/math.cos(math.radians(phi)));\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "power factor of existing load is 0.8 lagging\n", "phi = 36 degree\n", "kVAr1 = 70757 \n", "output for the synchronous motor is 200kW\n", "Input to the synchronous motor = 222.222222kW\n", "Total load on the system = 1022.222222kW\n", "overall power factor of the load is to be raised to 0.92 lagging\n", "kVAr2 = 89463.266068\n", "lagging kVAr of synchronous codenser = -18706.160461\n", "leading kVAr supplied by the motor = -18706.160461\n", "phi = -89 degree\n", "Power factor of the synchronos motor = 0.011879 leading \n", "KVA rating of the synchronous motor = 18707.480373\n" ] } ], "prompt_number": 29 } ], "metadata": {} } ] }