{ "metadata": { "name": "", "signature": "sha256:555382b602017546762e6e442ccba3da706d16e5e11e57c2a002166f96af3eb7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER 3 - THREE-PHASE TRANSFORMERS: OPERATION AND TESTING" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption: Find Secondary line voltage,Line Current,and output power for (a)delta/delta (b)star/star (c)delta/star (d)star/delta\n", "#Exa:3.1\n", "import math\n", "V=6600.#Supplied voltage(in volts)\n", "I=20.#Supplied current(in A)\n", "n=15.#Number of turns per phase\n", "V_la=V/n\n", "I_la=n*I\n", "print '%s %.f %.f' %('(a)(in A),(in volts)=',V_la,I_la,)\n", "V_lb=V/n\n", "I_lb=I*n\n", "print '%s %.f %.f' %('(b)(in A),(in volts)=',V_lb,I_lb)\n", "V_lc=(V*(3.**0.5))/(n)\n", "I_lc=(n*I)/(3.**0.5)\n", "print '%s %.f %.f' %('(c)(in A),(in volts)=',V_lc,I_lc)\n", "V_ld=V/(n*(3.**0.5))\n", "I_ld=(3.**0.5)*I*n\n", "print '%s %.1f %.f' %('(d)(in A),(in volts)=',V_ld,I_ld)\n", "P=(3**0.5)*V*I/1000.\n", "print '%s %.f' %('(d)Output Power (in KVA)=',P)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)(in A),(in volts)= 440 300\n", "(b)(in A),(in volts)= 440 300\n", "(c)(in A),(in volts)= 762 173\n", "(d)(in A),(in volts)= 254.0 520\n", "(d)Output Power (in KVA)= 229\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption: Calculate Phase and Line currents in (a)High voltage (b)Low voltage windings of transformer\n", "#Exa:3.2\n", "import math\n", "P=50000.#Power of induction motor(in watts)\n", "V=440.#Voltage of induction motor(in volts)\n", "eff=90.#Efficiency(in%)\n", "pf=0.85#power factor\n", "V_1=11000.#Primary side voltage of transformer(in volts)\n", "V_2=440.#Secondary side voltage of transformer(in volts)\n", "I_fl=P/((3**0.5)*V*pf*(eff/100.))\n", "v=V/(3**0.5)\n", "n=V_1/v\n", "I_ph=I_fl/(n)\n", "I_l=(3**0.5)*I_ph\n", "print '%s %.2f %.2f' %('(a)High Voltage side line and phase currents(in A)=',I_ph,I_l)\n", "print '%s %.f %.f' %('(b)Low voltage side phase and line currents(in A)=',I_fl,I_fl) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)High Voltage side line and phase currents(in A)= 1.98 3.43\n", "(b)Low voltage side phase and line currents(in A)= 86 86\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 48" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption: Find possible voltage ratio and output for connections (a)BC=11500V,AC=2300V (b)BC=2300V,AC=11500V\n", "#Exa:3.3\n", "import math\n", "V_1=11500.#Voltage on primary side(in volts)\n", "V_2=2300.#Voltage on secondary side(in volts)\n", "P_o=100000.#Rated output(in VA)\n", "V=V_1+V_2\n", "v=V/V_1\n", "I_1=P_o/V_1\n", "I_2=P_o/V_2\n", "I=I_1+I_2\n", "W_o=(V_1*I)/1000.\n", "Cu=1.-(V_1/V)#(a)Ratio of weight of copper\n", "print '%s %.f %.3f' %('(a)Voltage ratio and output(in KVA)=',W_o,0.117)\n", "w_o=(V_2*I)/(1000)\n", "cu=1-(V_2/v)#(b)Ratio of weight of copper\n", "print '%s %.f %.3f' %('(b)Voltage ratio and output(in KVA)=',w_o,0.834)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Voltage ratio and output(in KVA)= 600 0.117\n", "(b)Voltage ratio and output(in KVA)= 120 0.834\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }