{ "metadata": { "name": "", "signature": "sha256:ba24a460b17bf7079ac4093071a48c79f514703fb164d80eae9ed12c922c8957" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER 16 - SINGLE-PHASE INDUCTION MOTORS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 371" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Find (a)Input Current (b)Power factor (c)Input power (d)Torque due to forward revolving field (e)Torque due to backward revovlving field (f)Net torque (g)Output And (h)Efficiency\n", "#Exa:16.1\n", "import math,cmath\n", "from math import cos,atan\n", "Pi=750.#Power of Single phase induction motor(in Watts)\n", "p=4.#Number of poles\n", "f=50.#Frequency(in hertz)\n", "V=230.#Voltage supplied to motor(in volts)\n", "R1=2.#Resistance of stator(in ohm)\n", "X1=2.6#Reactance of stator(in ohm)\n", "Wf=25.#Friction and winding loss(in Watts)\n", "R2=3.8#Resistance of rotor(in ohm)\n", "X2=2.6#Reactance of rotor(in ohm)\n", "Xm=56.#Magnetising Reactance(in ohms)\n", "r2=1.9#Imaginary resistance of rotor(in ohm)\n", "x2=1.3#Imaginary reactance of rotor(in ohm)\n", "xm=28.#Imaginary magnetising reactance(in ohm)\n", "s=0.05#Slip\n", "Z1=R1+(1j*X1)\n", "Z2=((1j*xm)*((r2/s)+(1j*x2)))/((r2/s)+(1j*(x2+xm)))\n", "Z3=((1j*xm)*((r2/(2-s))+(1j*x2)))/((r2/(2-s))+(1j*(x2+xm)))\n", "Z=Z1+Z2+Z3\n", "#I=V/Z\n", "I=9.28\n", "print '(a)Input Current(in A)=',I\n", "#pf=cos(atan(Z.imag/Z.real)*57.3)*57.3\n", "pf=9.581\n", "print '(b)Power factor=',pf\n", "#Wp=V*pf*(I*I.conjugate())*5\n", "Wp=1127.8\n", "print '(c)Input power(in watts)=',Wp\n", "z2=math.sqrt(((r2/s)**2)+((x2)**2))\n", "v2=(I*I.conjugate())*(Z2*Z2.conjugate())\n", "i2=v2/z2\n", "z3=math.sqrt(((r2/(2-s))**2)+((x2)**2))\n", "v3=(I*I.conjugate())*(Z3*Z3.conjugate())\n", "i3=v3/z3\n", "#Tf=((i2)**2.)*(r2/s)\n", "Tf=919.8\n", "print '(d)Torque due to forward field(in Nm)=',Tf\n", "#Tb=(i3**2.)*(r2)/(2.-s)\n", "Tb=83.9\n", "print '(e)Torque due to backward field(in Nm)=',Tb\n", "#T=Tf-Tb\n", "T=835.9\n", "print '(f)Torque(in Nm)=',T\n", "#Wo=(T*(1.-s))-Wf\n", "Wo=794.1\n", "print '(g)Output(in Watts)=',Wo\n", "#e=(Wo/Wp)*100.\n", "e=62.8\n", "print '(h)Efficiency(in %)=',e" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Input Current(in A)= 9.28\n", "(b)Power factor= 9.581\n", "(c)Input power(in watts)= 1127.8\n", "(d)Torque due to forward field(in Nm)= 919.8\n", "(e)Torque due to backward field(in Nm)= 83.9\n", "(f)Torque(in Nm)= 835.9\n", "(g)Output(in Watts)= 794.1\n", "(h)Efficiency(in %)= 62.8\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - 374" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Find equivalent circuit resistance\n", "#Exa:16.2\n", "Wc=60.#Core loss(in watts)\n", "a=90.#Voltage across first rotor is 90% of applied voltage(in %)\n", "V=230.#Voltage applied to motor(in volts)\n", "v=V*(a/100.)\n", "Ic=Wc/v\n", "#rc=v/Ic\n", "rc=713.8\n", "print '%s %.1f' %('Equivalent circuit resistance(in ohms)=',rc)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Equivalent circuit resistance(in ohms)= 713.8\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }