{ "metadata": { "name": "", "signature": "sha256:f8b31f19cbf3c6b3dce4ba746cfebc233c9801395be699bc2538e86d3ab6c5f4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2: Induction Motors(Additional problems)" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 1, Page 225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "P = 8 #number of poles\n", "f = 50 #Hz\n", "\n", "#Calculations\n", "Ns = (120*f)/P\n", "\n", "#Result\n", "print \"Synchronous speed = %d r.p.m.\"%Ns" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Synchronous speed = 750 r.p.m.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 2, Page 225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "P = 2 #assumption - number of poles\n", "f = 50 #Hz\n", "\n", "#Calculations\n", "Ns = (120*f)/P\n", "\n", "#Result\n", "print \"Maximum speed = %d r.p.m.\"%Ns" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum speed = 3000 r.p.m.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 3, Page 225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Pa = 6 #number of poles in alternator\n", "N = 1000 #rpm\n", "Pi = 16 #number of poles in induction motor\n", "S = 2.5 #slip\n", "\n", "#Calculations\n", "f = (N*Pa)/120 #Hz\n", "Ns = (120*f)/Pi #rpm\n", "Nr = Ns - ((S*Ns)/100)\n", "\n", "#Results\n", "print \"The actual motor speed is %.2f r.p.m.\"%Nr" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The actual motor speed is 365.62 r.p.m.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4, Page 225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "P = 14. #no. of poles\n", "f = 50. #Hz\n", "N = 414. #r.p.m.\n", "\n", "#calculations\n", "Ns = (120*f)/P #rpm\n", "S = ((Ns-N)/Ns)*100\n", "fr = (S*f)/100\n", "\n", "#Results\n", "print \"Rotor frequency = %.2f Hz\"%fr\n", "print \"Slip = %.2f %%\"%S\n", "#Incorrect answers in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rotor frequency = 1.70 Hz\n", "Slip = 3.40 %\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 5, Page 225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Pi = 50 #motor input - KW\n", "S = 3./100 #slip - %\n", "\n", "#Calculations\n", "Lc = Pi*S #rotor copper loss\n", "Pm = Pi-Lc\n", "\n", "#Result\n", "print \"Total mechanical power = %.1f kW\"%Pm" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total mechanical power = 48.5 kW\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 6, Page 225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "P = 4 #no. of poles\n", "m = 3\n", "f = 50 #Hz\n", "n = 85 #efficiency %\n", "Po = 17. #useful output power kW\n", "Ls = 900 #stator losses W\n", "Lwf = 1100 #windage&friction losses W\n", "Lrc = 1. #rotor copper loss kW\n", "\n", "#Calculations\n", "Pi = Po/n*100 #input power\n", "Tl = Pi-Po #total losses kW\n", "Lc = Tl - Ls - Lwf #copper loss W\n", "Pir = Pi-Ls #input to rotor kW\n", "S = Lrc/Pi\n", "Ns = 120*f/P #rpm\n", "N = Ns-(S*Ns) #rpm\n", "wT = 19.1*1000 #W\n", "Td = (wT*60)/(math.pi*2*N)\n", "Ta = (Po*1000*60)/(2*math.pi*N)\n", "\n", "#Results\n", "print \"Slip = %.3f\"%S\n", "print \"Torque developed = %.2f N-m\"%Td\n", "print \"Torque available = %.1f N\"%Ta\n", "#Answers vary due to rounding-off errors" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip = 0.050\n", "Torque developed = 127.99 N-m\n", "Torque available = 113.9 N\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 7, Page 225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "P = 6 #no. of poles\n", "f = 60 #Hz\n", "T = 70 #N-m\n", "N = 1152. #rpm\n", "\n", "#Calculations\n", "#Part a\n", "Pi = (2*math.pi*1200*T)/60/1000 #input to rotor W\n", "Ns = (120.*f)/P #rpm\n", "S = (Ns-N)/Ns\n", "\n", "#Part b\n", "Lrc = S*Pi*1000 #W\n", "Td = (2*math.pi*N*T)/60\n", "\n", "#Part c\n", "Pm = Td #W\n", "\n", "#Results\n", "print \"Total input to the rotor = %.1f kW\"%Pi\n", "print \"Rotor copper loss = %d W\"%Lrc\n", "print \"Mechanical power developed = %.2f W\"%Pm\n", "#answers vary due to rounding-off errors" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total input to the rotor = 8.8 kW\n", "Rotor copper loss = 351 W\n", "Mechanical power developed = 8444.60 W\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 8, Page 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Vs = 100 #voltage between two slip rings V\n", "R2 = 0.2 #ohms/phase\n", "Xo = 1 #ohm/phase\n", "S = 0.04 #slip\n", "\n", "#Calculations\n", "Eo = Vs/math.sqrt(3)\n", "I2 = (S*Eo)/math.sqrt(R2**2+(S*Xo)**2)\n", "#During maximum torque,\n", "Sm = R2/Xo \n", "Ir = (Sm*Eo)/math.sqrt(S**2+(S*Xo)**2)\n", "\n", "#Results\n", "print \"Rotor current when slip is 4%% is %.1f A\"%I2\n", "print \"Slip during maximum torque is %.1f\"%Sm\n", "print \"Rotor current during maximum torque is %.1f A\"%Ir #incorrect answer in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rotor current when slip is 4% is 11.3 A\n", "Slip during maximum torque is 0.2\n", "Rotor current during maximum torque is 204.1 A\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 9, Page 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "S = 1 #slip at the time of starting\n", "X2 = 1 #ohms/pase\n", "X1 = 0.1 #internal rotor resistance ohms/phase\n", "\n", "#Calculations\n", "#Total resistance required for maximum torque is 1 Ohm\n", "Re = X2-X1\n", "\n", "#Result\n", "print \"External resistance needed to be added is %.1f ohms/phase\"%Re" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "External resistance needed to be added is 0.9 ohms/phase\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 10, Page 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import sympy\n", "from sympy.solvers import solve\n", "from sympy import Symbol\n", "\n", "#Variable declaration\n", "T = 162.8 #maximum torque Nw-m\n", "N = 1365 #speed rpm\n", "f = 50 #Hz\n", "P = 4 #no. of poles\n", "R2 = 0.2 #ohms/phase\n", "\n", "#Calculations\n", "Ns = 120*f/P\n", "S = Ns-N/Ns #slip at maximum torque\n", "X2 = R2/S #ohms\n", "Th = T/2 #half of maximum torque\n", "R2 = Symbol('R2')\n", "x = solve((Th*R2**2-18.1*40*R2+400),R2) #solving the equation\n", "\n", "#Results\n", "print \"Required resistance = \",round(x[0],2),\"ohms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Required resistance = 0.59 ohms\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 11, Page 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "N = 290. #speed of motor at full load rpm\n", "f = 50 #Hz\n", "\n", "#Calculations\n", "P = 20 #since motors running at full load\n", "Ns= 120*f/P\n", "S1 = (Ns-N)/Ns*100\n", "#since S is directly proportinal to R2,\n", "#when R2 is doubled, S is also doubled\n", "S = 2*S1\n", "\n", "#Results\n", "print \"The number of poles are %d\"%P\n", "print \"Slip = %.1f %%\"%S1\n", "print \"Slip if the rotor resistance is doubled = %.1f %%\"%S" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of poles are 20\n", "Slip = 3.3 %\n", "Slip if the rotor resistance is doubled = 6.7 %\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 12, Page 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declarartion\n", "S = 2.5/100 #slip\n", "#Isc=4*If\n", "\n", "#Calculations\n", "'''\n", "Ts Isc ^2\n", "-- = --- * slip\n", "Tf If\n", "'''\n", "Ts_by_Tf = 4**2*S*100\n", "\n", "#Result\n", "print \"Starting torque is %d %% of full load torque\"%Ts_by_Tf" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Starting torque is 40 % of full load torque\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 13, Page 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "f = 50 #Hz\n", "P = 6 #no. of poles\n", "S = 1 #slip\n", "Eo = 62.8 #phase voltage V\n", "m = 3.\n", "Xo = 6 #rotor reactance ohms\n", "R2 = 1 #resistance ohms\n", "\n", "#Calculations\n", "Ns = 120*f/P #rpm\n", "ws = 2*math.pi*Ns/60 #rad/sec\n", "K = m/ws\n", "Ts = (K*S*Eo**2*R2)/((R2**2)+(S*Xo)**2) #at starting\n", "#For maximum torque\n", "R2 = 1 #ohm\n", "X2 = 6 #ohms\n", "S = R2/X2\n", "Tmax = (K*Eo**2)/(2*X2)\n", "\n", "#Result\n", "print \"The starting torque is %.3f N-m\"%Ts\n", "print \"The maximum torque develped is %.1f N-m\"%Tmax\n", "#Incorrect soltion in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The starting torque is 3.054 N-m\n", "The maximum torque develped is 9.4 N-m\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 14, Page 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Vl = 200. #line voltage of stator V\n", "t = 0.67 #turn ratio\n", "Ns = 1500. #rpm\n", "R2 = 0.1 #resistance ohms\n", "S = 0.04 #slip\n", "X = 0.9 #reactance ohms\n", "m = 3. #number of phases\n", "\n", "#Calculations\n", "Vp = Vl/math.sqrt(3) #phase voltage of stator V\n", "E = Vp*t\n", "ws = (2*math.pi*Ns)/60\n", "K = m/ws\n", "T = (K*S*E**2*R2)/(R2**2+(S*X)**2)\n", "\n", "#Result\n", "print \"Total torque = %d N-m\"%T\n", "#Incorrect answer in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total torque = 40 N-m\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 15, Page 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "P = 8 #number of pos\n", "f = 50. #Hz\n", "S = 0.04 #slip\n", "Po = 15*1000 #oput power W\n", "R2 = 0.2 #rotor resistance Ohms\n", "X = 1.5 #rotor reactance Ohms\n", "N = 400 #ohms\n", "\n", "#Calculations\n", "Ns = (120*f)/P #rpm\n", "S_dash = (Ns-N)/Ns\n", "R2_dash = (R2*S_dash)/S #ohms\n", "R = R2_dash-R2 #resistance to be added\n", "Pi = Po/(1-S) #W\n", "Lc = S_dash*Pi #rotor copper loss W\n", "P = Pi - Lc #ouput power W\n", "\n", "#Results\n", "print \"The external resistance to be connected per phase is %.2f ohms\"%R\n", "print \"Total rotor copper loss = %d W\"%Lc\n", "print \"Ouput power of motor = %d W\"%P\n", "\n", "#Incorrect answers in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The external resistance to be connected per phase is 2.13 ohms\n", "Total rotor copper loss = 7291 W\n", "Ouput power of motor = 8333 W\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 16, Page 227" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "n = 0.8 #efficiency \n", "O = 20*735.5 #load/output\n", "\n", "#Calculations\n", "i = O/n #input W\n", "Tl = i - O #total losses W\n", "#since total losses is a sum of rotor copper loss+stator copper loss+iron loss+mechanical loss\n", "K = (Tl*3)/10 #rotor copper loss W\n", "Ri = O+(K/3)+K #input to the rotor W \n", "S = K/Ri #slip\n", "\n", "#Result \n", "print \"Slip = %.3f\"%S" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip = 0.068\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 17, Page 227" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Pi = 20 #input power KW\n", "N = 960. #speed rpm\n", "f = 50 #Hz\n", "P = 6 #number of poles\n", "R2 = 1./3 #resistance ohms\n", "\n", "#Calculations\n", "Ns = 1000.\n", "S = (Ns-N)/Ns #slip\n", "Lrc = S*Pi*1000 #rotor copper loss W\n", "Lrc_ph = Lrc/3 #rotor copper loss per phase\n", "I2 = math.sqrt(Lrc_ph/R2)\n", "\n", "#Result\n", "print \"Rotor current per phase = %.1f A\"%I2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rotor current per phase = 28.3 A\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 18, Page 227" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "P = 4 #number of poles \n", "f = 50. #Hz\n", "N = 645. #speed rpm\n", "R2 = 0.04 #rotor resistance ohms\n", "\n", "#Calculations\n", "Ns = (120*f)/P #rpm\n", "S = (Ns-N)/Ns #slip\n", "X2 = R2/S #rotor reactance ohms\n", "a = R2/X2\n", "St_by_mt = (2*a)/(a*2+1) #starting torque/maximum torque\n", "S = 0.03\n", "Flt_by_mt = (2*a*S)/(a**2+S**2) #full load torque/maximum torque\n", "\n", "#Results\n", "print \"Maximum torque at starting is %d %%\"%(St_by_mt*100)\n", "print \"Maximum torque when slip is 3%% is %d %%\"%(Flt_by_mt*100)\n", "\n", "#Value of Ns ic wrongly calculated in the textbook. Hence the answers vary" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum torque at starting is 53 %\n", "Maximum torque when slip is 3% is 10 %\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 20, Page 227" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "R2 = 0.5 #rotor resistance ohms\n", "X2 = 5 #rotor reactance ohms\n", "Tm_by_tfl = 2.5 #max torque/full load torque\n", "\n", "#Calculations\n", "#Tfl = Tm/2.5 = KE^2/2.5*2*X2\n", "#Part a\n", "Tst_by_Tfl_a = (25*R2)/(R2**2+X2**2)\n", "\n", "#Part b\n", "Tst_by_Tfl_b = (25*R2)/(3*(R2**2+X2**2))\n", "\n", "#Part c\n", "#Rotor voltage at starting = 0.75E2\n", "Tst_by_Tfl_c = (0.75**2*25*R2)/(R2**2+X2**2)\n", "\n", "#Results\n", "print \"The ratio of starting torque to full load torque for the given cases are as below:\"\n", "print \"Part a: %.2f\"%Tst_by_Tfl_a\n", "print \"Part a: %.2f\"%Tst_by_Tfl_b\n", "print \"Part a: %.2f\"%Tst_by_Tfl_c" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio of starting torque to full load torque for the given cases are as below:\n", "Part a: 0.50\n", "Part a: 0.17\n", "Part a: 0.28\n" ] } ], "prompt_number": 21 } ], "metadata": {} } ] }