{ "metadata": { "name": "", "signature": "sha256:0e3f32e542105b85338ffef953c9f9ed43138aa30c5d9cb997a0731312a71a64" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2: Induction Motors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1, Page 130" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data : \n", "P=2;#no. of poles\n", "f=60;#in Hz\n", "N=3460.;#in rpm\n", "\n", "#Calculations\n", "Ns=120*f/P;#in rpm\n", "Slip=Ns-N;#in rpm\n", "PercentageSlip=((Ns-N)/Ns)*100;#in %\n", "\n", "#Results\n", "print \"Synchronous speed in rpm : \",Ns;\n", "print \"Percentage Slip : \",round(PercentageSlip,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Synchronous speed in rpm : 3600\n", "Percentage Slip : 3.89\n" ] } ], "prompt_number": 124 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2, Page 131" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data : \n", "P=8.;#no. of poles\n", "f=50.;#in Hz\n", "N=700.;#in rpm\n", "\n", "#Calculations&Results\n", "#Part (a) :\n", "Ns=120*f/P;#in rpm\n", "print \"Synchronous speed in rpm : \",Ns;\n", "#Part (b) :\n", "S=(Ns-N)*100/Ns;#in %\n", "print \"Slip(in %) : \",round(S,2);\n", "#Part (c) :\n", "#At the time of stsrt S=1;\n", "fdash=f;#in Hz\n", "print \"Rotor frequeny at the time of starting(in Hz) : \",fdash;\n", "#Part (d) :\n", "fdash=(S/100)*f;#in Hz\n", "print \"Rotor frequeny at the given speed(in Hz) : \",round(fdash,1);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Synchronous speed in rpm : 750.0\n", "Slip(in %) : 6.67\n", "Rotor frequeny at the time of starting(in Hz) : 50.0\n", "Rotor frequeny at the given speed(in Hz) : 3.3\n" ] } ], "prompt_number": 125 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3, Page 131" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data : \n", "P=10;#no. of poles\n", "f=50;#in Hz\n", "N=600;#in rpm\n", "Nr=1440;#in rpm\n", "\n", "#Calculations&Results\n", "f=P*N/120;#in Hz\n", "#When P=2\n", "P=2;#no. of poles\n", "Ns=120*f/P;#in rpm\n", "#When P=4\n", "P=4;#no. of poles\n", "Ns=120*f/P;#in rpm\n", "S=(Ns-Nr)*100/Ns;#Slip in %\n", "print \"Percentage Slip(in %) : \",(S);\n", "print \"No. of poles : \",(S);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage Slip(in %) : 4\n", "No. of poles : 4\n" ] } ], "prompt_number": 126 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4, Page 132" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data : \n", "P=8;#no. of poles\n", "f=50;#in Hz\n", "fr=1.5;#in Hz\n", "\n", "#Calculations\n", "#Formula : fr=S*f\n", "S=fr/f;#slip(unitless)\n", "Ns=120*f/P;#in rpm\n", "#Formula : S=(Ns-Nr)/Ns\n", "Nr=Ns-S*Ns;#in rpm\n", "\n", "#Results\n", "print \"Motor running speed in rpm : \",round(Nr);\n", "print \"Slip(in %):\",(S*100);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Motor running speed in rpm : 728.0\n", "Slip(in %): 3.0\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.5, Page 133" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data : \n", "P=2;#no. of poles\n", "f=50;#in Hz\n", "S=4.;#in %\n", "\n", "#Calculations&Results\n", "#Part (i) : \n", "Ns=f/P;#in rps\n", "Ns=Ns*60;#in rpm\n", "print \"Synchronous speed in rpm : \",Ns;\n", "#Part (ii) :\n", "print \"Slip = \",(S),\"% or \",(S/100);\n", "#Part (iii) :\n", "N=Ns*(1-S/100);#in rpm\n", "print \"Actual speed in rpm :\",N;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Synchronous speed in rpm : 1500\n", "Slip = 4.0 % or 0.04\n", "Actual speed in rpm : 1440.0\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6, Page 133" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data : \n", "P=4;#no. of poles\n", "f1=50;#in Hz\n", "fdash=1.5;#in Hz\n", "\n", "#Calculations\n", "S=fdash/f1;#unitless\n", "print \"Slip : \",S;\n", "Ns=120*f1/P;#in rpm\n", "N=Ns*(1-S);#in rpm\n", "\n", "#Result\n", "print \"Speed of motor in rpm :\",N;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.03\n", "Speed of motor in rpm : 1455.0\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7, Page 138" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data : \n", "N=1440;#in rpm\n", "\n", "#Calculations&Results\n", "f=50;#in Hz\n", "print \"For this speed of 1440 rpm the synchronous speed may be either 1500 rpm or 3000 rpm.\";\n", "Ns=1500;#in rpm\n", "P=4;#no. of poles\n", "print \"No. of poles : \",P;\n", "Slip=(Ns-N)*100/Ns;#in %\n", "print Slip,\"Slip(in %) : \",Slip;\n", "speed1=Ns-N;#Speed of rotor flux with respect to rotor\n", "print \"Speed of rotor flux with respect to rotor in rpm : \",speed1;\n", "speed2=(speed1)+N;#Speed of rotor flux with respect to stator\n", "print \"Speed of rotor flux with respect to stator in rpm :\",speed2;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For this speed of 1440 rpm the synchronous speed may be either 1500 rpm or 3000 rpm.\n", "No. of poles : 4\n", "4 Slip(in %) : 4\n", "Speed of rotor flux with respect to rotor in rpm : 60\n", "Speed of rotor flux with respect to stator in rpm : 1500\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8, Page 140" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, sqrt, sin, cos, acos, tan, atan, degrees\n", "\n", "#Given data : \n", "E2=100;#in volt\n", "R2=0.05;#in ohm\n", "X2=0.1;#im ohm\n", "\n", "#Calculations&Results\n", "E2perphase=E2/sqrt(3);#in volt\n", "#part (a) : \n", "S=0.04;#slip\n", "I2=S*E2perphase/sqrt(R2**2+(S*X2)**2);#in Ampere\n", "print \"At 4% slip, Rotor current in Ampere : \",round(I2,2);\n", "fi2=degrees(acos(R2/sqrt(R2**2+(S*X2)**2)));#in degree\n", "print \"At 4% slip, Phase angle between rotor voltage and rotor current in degree :\",round(fi2,2);\n", "#part (b) : \n", "S=1;#slip\n", "I2=S*E2perphase/sqrt(R2**2+(S*X2)**2);#in Ampere\n", "print \"At 100% slip, Rotor current in Ampere : \",round(I2,2);\n", "fi2=degrees(acos(R2/sqrt(R2**2+(S*X2)**2)));#in degree\n", "print \"At 100% slip, Phase angle between rotor voltage and rotor current in degree :\",round(fi2,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "At 4% slip, Rotor current in Ampere : 46.04\n", "At 4% slip, Phase angle between rotor voltage and rotor current in degree : 4.57\n", "At 100% slip, Rotor current in Ampere : 516.4\n", "At 100% slip, Phase angle between rotor voltage and rotor current in degree : 63.43\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.9, Page 141" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Given data : \n", "E2=100.;#in volt\n", "R2=0.4;#in ohm\n", "X2=2.25;#im ohm\n", "\n", "#Calculations\n", "E2perphase=E2/sqrt(3);#in volt\n", "S=4.;#in %\n", "E=(S/100)*E2perphase;#rotor induced emf at a slip=4% in volt\n", "Z2=sqrt(R2**2+((S/100)*X2)**2);\n", "I2=E/Z2;#in Ampere\n", "\n", "#Result\n", "print \"Rotor current in Ampere : \",round(I2,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rotor current in Ampere : 5.63\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.10, Page 141" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, sqrt, sin, cos\n", "\n", "#Given data : \n", "f=50;#in Hz\n", "R2=0.2;#in ohm\n", "X2=2;#im ohm\n", "E2=60;#in volt\n", "\n", "#Calculations&Results\n", "E2perphase=E2/sqrt(3);#in volt\n", "#case (i) : S=1 \n", "S=1;#unitless\n", "Z2=sqrt(R2**2+(S*X2)**2);\n", "I2=E2perphase*S/Z2;#in Ampere\n", "print \"At standstill : Rotor current in Ampere : \",round(I2,2);\n", "#case (ii) : S=0.1 \n", "S=0.1;#unitless\n", "Z2=sqrt(R2**2+(S*X2)**2);\n", "I2=E2perphase*S/Z2;#in Ampere\n", "print \"for 10% slip : Rotor current in Ampere : \",round(I2,2);\n", "#case (iii) : S=0.05 \n", "S=0.05;#unitless\n", "Z2=sqrt(R2**2+(S*X2)**2);\n", "I2=E2perphase*S/Z2;#in Ampere\n", "print \"for 5% slip : Rotor current in Ampere : \",round(I2,2);\n", "#case (iv) : S=0.01 \n", "S=0.01;#unitless\n", "Z2=sqrt(R2**2+(S*X2)**2);\n", "I2=E2perphase*S/Z2;#in Ampere\n", "print \"for 1% slip : Rotor current in Ampere : \",round(I2,2);\n", "#Note : Answer in the book is wrong for S=0.05 and S=0.01" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "At standstill : Rotor current in Ampere : 17.23\n", "for 10% slip : Rotor current in Ampere : 12.25\n", "for 5% slip : Rotor current in Ampere : 7.75\n", "for 1% slip : Rotor current in Ampere : 1.72\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.11, Page 142" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, sqrt, sin, cos\n", "\n", "#Given data : \n", "R2=0.5;#in ohm\n", "X=4.5;#im ohm\n", "E=50;#line voltage in volt\n", "\n", "#Calculations&Results\n", "Eperphase=E/sqrt(3);#in volt\n", "#part (a) : Sliprings are short circuited\n", "Z2=sqrt(R2**2+X**2);#in ohm\n", "I2=Eperphase/Z2;#in Ampere\n", "print \"Sliprings are short circuited, Rotor current in Ampere : \",round(I2,2);\n", "cosfi2=R2/Z2;#unitless\n", "print \"Power factor : \",round(cosfi2,2);\n", "#part (b) : Sliprings are connected \n", "R2=0.4;#in ohm\n", "Z2=sqrt(R2**2+X**2);#in ohm\n", "I2=Eperphase/Z2;#in Ampere\n", "print \"Sliprings are short circuited, Rotor current in Ampere : \",round(I2,2);\n", "cosfi2=R2/Z2;#unitless\n", "print \"Power factor : \",round(cosfi2,2);\n", "#Note : answer of part (a) I2 is not curate in the book." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Sliprings are short circuited, Rotor current in Ampere : 6.38\n", "Power factor : 0.11\n", "Sliprings are short circuited, Rotor current in Ampere : 6.39\n", "Power factor : 0.09\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.12, Page 146" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data : \n", "R2=0.02;#in ohm\n", "X2=0.1;#im ohm\n", "\n", "#Calculations&Results\n", "#let external resistance per phase = r then R2=R2+r ohm\n", "S=1;#slip at starting\n", "print \"Since at start speed is zero and slip is, therefore, unity or R2=X2\";\n", "r=X2-R2;#in ohm\n", "print \"External resistance per phase added to the rotor circuit in ohms : \",r;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Since at start speed is zero and slip is, therefore, unity or R2=X2\n", "External resistance per phase added to the rotor circuit in ohms : 0.08\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.13, Page 147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, sqrt, sin, cos\n", "\n", "#Given data : \n", "P=4;#no. of poles\n", "f=50;#in Hz\n", "R2=0.03;#in ohm\n", "X2=0.12;#im ohm\n", "\n", "#Calculations&Results\n", "Smax=R2/X2;#unitless\n", "Ns=120*f/P;#in rpm\n", "N=Ns*(1-Smax);#in rpm\n", "print \"Speed corresponding to maximum torque(in rpm) :\",N;\n", "#alfa=(R2+r)/X2\n", "#Ratio of starting torque to max torque=75/100=2*alfa/(alfa^2+1)\n", "#It gives : 3*alfa^2-8*alfa+3=0\n", "#coefficients :\n", "a=3;b=-8;c=3;\n", "alfa1=(-b+sqrt(b**2-4*a*c))/(2*a);alfa2=(-b-sqrt(b**2-4*a*c))/(2*a);\n", "print \"rejecting higher values, alfa = \",round(alfa2,4);\n", "fdash=1.5;#in Hz\n", "r=alfa2*X2-R2;#in ohm;\n", "print \"External rotor resistance per phase(in ohm) : \",round(r,4);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed corresponding to maximum torque(in rpm) : 1125.0\n", "rejecting higher values, alfa = 0.4514\n", "External rotor resistance per phase(in ohm) : 0.0242\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.14, Page 147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "P=4;#no. of poles\n", "f=50;#in Hz\n", "R2=0.024;#in ohm\n", "X2=0.6;#in ohm \n", "\n", "#Calculations&Results\n", "Sm=R2/X2;#slip corresponding to max torque\n", "Ns=120*f/P;#in rpm\n", "N=Ns*(1-Sm);#in rpm\n", "print \"Speed corresponding to maximum torque in rpm : \",N;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed corresponding to maximum torque in rpm : 1440.0\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.15, Page 148" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "P=6;#no. of poles\n", "f=50;#in Hz\n", "Sf=4.;#in %\n", "R2=0.01;#in ohm\n", "X2=0.05;#im \n", "\n", "#Calculations&Results\n", "Ratio=((R2/X2)**2+(Sf/100)**2)/(2*R2*(Sf/100)/X2);#ratio of max torque to full load torque\n", "print \"Maximum torque, Tmax=\",(Ratio),\"Tf\";\n", "Sm=R2/X2;#slip corresponding to max torque\n", "Ns=120*f/P;#in rpm\n", "N=Ns*(1-Sm);#in rpm\n", "print \"Speed corresponding to maximum torque in rpm : \",N;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum torque, Tmax= 2.6 Tf\n", "Speed corresponding to maximum torque in rpm : 800.0\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.16, Page 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "P=12;#no. of poles\n", "f=50.;#in Hz\n", "R2=0.03;#in ohm\n", "X2=0.5;#im \n", "\n", "#Calculations&Results\n", "S=R2/X2;#unitless\n", "Ns=120*f/P;#in rpm\n", "N=Ns*(1-S);#in rpm\n", "print \"Speed at maximum torque in rpm : \",N;\n", "S=(Ns-495)/Ns;#slip at 495 rpm speed\n", "Ratio=(2*R2*S/X2)/((R2/X2)**2+S**2);#ratio of max torque to full load torque\n", "print \"Ratio of full load torque to max torque(in %) :\",round((Ratio*100),1);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed at maximum torque in rpm : 470.0\n", "Ratio of full load torque to max torque(in %) : 32.4\n" ] } ], "prompt_number": 142 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.17, Page 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, sqrt, sin, cos\n", "\n", "#Given data :\n", "P=12;#no. of poles\n", "f=50;#in Hz\n", "R2=0.5;#in ohm\n", "N=475.;#in rpm\n", "\n", "#Calculations&Results\n", "Ns=120*f/P;#in rpm\n", "S=(Ns-N)/Ns;#unitless\n", "X2=R2/S;#in ohm\n", "#\"At maximum torque, Tmax is proportional to 1/2*X2 or 1/20\";\n", "# \"Ts is proportional to (R2+R)/((R2+R)^2+X2^2)\";\n", "# \"Also, Ts is proportional to 1(20*3)\";\n", "# \"Equating the two eqn we have : (0.5*R)/(R2+R)^2+X2^2\";\n", "#R^2-59R+70.25=0 : \n", "#coefficients :\n", "a=1;b=-59;c=70.25;\n", "R=(-b-sqrt(b**2-4*a*c))/(2*a);\n", "print \"Resistance R to be inserted in series (in ohm) :\",round(R,1);\n", "#Note : answer in the book is wrong." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance R to be inserted in series (in ohm) : 1.2\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.18, Page 150" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "P=4;#no. of poles\n", "f=50;#in Hz\n", "R2=0.04;#in ohm\n", "N=1200.;#in rpm(speed at max torque)\n", "\n", "#Calculations\n", "Ns=120*f/P;#in rpm(synchronous speed)\n", "S=(Ns-N)/Ns;#unitless\n", "X2=R2/S;#in ohm\n", "#Starting torque is the torque devloped when S=1: Tst=K*R2/(R2^2+X2^2)\n", "#Let say, m=R2/(R2^2+X2^2) then Tst=K*m\n", "m=R2/(R2**2+X2**2);#assumed\n", "\n", "#Results\n", "print \"Starting torque, Tst=\",round(m,2),\"k\";\n", "print \"Maximum torque, Tm=K/\",(2*X2);\n", "print \"Thus, Tst in terms of Tm can be expressed as : \";\n", "print \"Tst/Tm=\",(0.96*0.4),\" or Tst=\",(0.96*0.4),\"Tm\";\n", "print \"Therefore, staring torque is \",(0.96*0.4*100),\"% of maximum torque.\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Starting torque, Tst= 0.96 k\n", "Maximum torque, Tm=K/ 0.4\n", "Thus, Tst in terms of Tm can be expressed as : \n", "Tst/Tm= 0.384 or Tst= 0.384 Tm\n", "Therefore, staring torque is 38.4 % of maximum torque.\n" ] } ], "prompt_number": 144 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.19, Page 155" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "P=6;#no. of poles\n", "f=50;#in Hz\n", "fr=3.;#in Hz\n", "R2=0.5;#in ohm\n", "N=475;#in rpm\n", "RotorInput=111.9;#in KW\n", "\n", "#Calculations&Results\n", "Ns=120*f/P;#in rpm\n", "S=fr*100/f;#unitless\n", "print \"% Slip : \",S;\n", "N=Ns*(1-S/100);#in rpm\n", "print \"Speed of motor in rpm : \",N;\n", "RotorCopperLoss=RotorInput*S/100;#in KW\n", "RotorCopperLoss=RotorCopperLoss/3;#in KW/Phase\n", "print \"Rotor Copper Loss per phase(in KW) : \",RotorCopperLoss;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "% Slip : 6.0\n", "Speed of motor in rpm : 940.0\n", "Rotor Copper Loss per phase(in KW) : 2.238\n" ] } ], "prompt_number": 146 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.20, Page 156" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "phase=3.;#no. of phase\n", "Pin_stator=60.;#Power input of stator in KW\n", "TotalStatorLosses=1.;#in KW\n", "\n", "#Calculations&Results\n", "Pin_rotor=Pin_stator-TotalStatorLosses;#Power input of rotor in KW\n", "S=3.;#slip in %\n", "RotorCopperLosses=(S/100)*Pin_rotor;#in KW\n", "RotorCopperLosses=RotorCopperLosses/phase;#in KW per phase\n", "print \"Rotor Copper Losses per phase(in watts) : \",(RotorCopperLosses*10**3);\n", "TotalMechPowerDev=Pin_rotor*(1-S/100);#in KW\n", "print \"Total mechanial power developed(in KW) : \",TotalMechPowerDev;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rotor Copper Losses per phase(in watts) : 590.0\n", "Total mechanial power developed(in KW) : 57.23\n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.21, Page 156" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "P=6;#no. of poles\n", "S=4.;#slip in %\n", "Output=20;#in KW\n", "\n", "#Calculations&Results\n", "FrictionalLoss=250;#in watts\n", "f=50;#in Hz\n", "Ns=120*f/P;#in rpm\n", "N=Ns-Ns*(S/100);#in rpm\n", "print \"Speed of motor(in rpm) : \",N;\n", "MechPowerDeveloped=Output*10**3+FrictionalLoss;#in Watts\n", "S=S/100;#unitless\n", "RotorCopperLoss=(S/(1-S))*MechPowerDeveloped;#in watts\n", "print \"Rotor Copper Loss(in watts) : \",RotorCopperLoss;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed of motor(in rpm) : 960.0\n", "Rotor Copper Loss(in watts) : 843.75\n" ] } ], "prompt_number": 147 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.22, Page 157" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "phase=3;#no. of phase\n", "P=6;#no. of poles\n", "Pin_rotor=80;#Power input of rotor in KW\n", "f=50;#in Hz\n", "fdash=100;#alternations per minute\n", "\n", "#Calculations&Results\n", "fdash=100./60;#in Hz\n", "S=fdash/f;#unitless\n", "print \"Slip : \",round(S,4);\n", "Ns=120*f/P;#synchronous speed in rpm\n", "N=Ns-Ns*S;#in rpm\n", "print \"Rotor Speed(in rpm) : \",round(N);\n", "MechPowerDev=Pin_rotor*(1-S)*10**3/735.5;#in H.P.\n", "print \"Total mechanial power developed(in KW) : \",round(MechPowerDev,2);\n", "RotorCopperLoss=S*Pin_rotor*10**3;#in watts\n", "print \"Rotor Copper Loss(in watts) : \",RotorCopperLoss;\n", "CopperLoss=RotorCopperLoss/phase;#in watts/phase\n", "print \"Copper Loss per phase(in watts) : \",round(CopperLoss);\n", "I2=60;#in Ampere\n", "R2=CopperLoss/I2**2;#in ohm\n", "print \"Rotor resistance per phase(in ohm) : \",round(R2,3);\n", "#Note : Some answers are not accurate in the book." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.0333\n", "Rotor Speed(in rpm) : 967.0\n", "Total mechanial power developed(in KW) : 105.14\n", "Rotor Copper Loss(in watts) : 2666.66666667\n", "Copper Loss per phase(in watts) : 889.0\n", "Rotor resistance per phase(in ohm) : 0.247\n" ] } ], "prompt_number": 148 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.23, Page 158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "UsefulOutput=55;#in H.P.\n", "MechLosses=2;#in H.P.\n", "Stator_Losses=13.5;#in KW\n", "\n", "#Calculations&Results\n", "MechPowerDev=UsefulOutput+MechLosses;#in H.P.\n", "MechPowerDev=MechPowerDev*735.5/1000;#in KW\n", "S=50.;#in %\n", "Pin_Rotor=MechPowerDev/(1-S/100);#in KW\n", "RotorCopperLoss=(S/100)*Pin_Rotor;#in KW\n", "print \"Rotor Copper Loss(in KW) : \",round(RotorCopperLoss,2);\n", "Pin_Motor=Pin_Rotor+Stator_Losses;#in KW\n", "Efficiency=UsefulOutput*0.7355/Pin_Motor;#/unitless\n", "print \"Effiiency(in %) :\",round((Efficiency*100),1);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rotor Copper Loss(in KW) : 41.92\n", "Effiiency(in %) : 41.6\n" ] } ], "prompt_number": 149 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.24, Page 159" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "phase=3;#no. of phase\n", "P=6;#no. of poles\n", "Pin_rotor=80;#Power input of rotor in KW\n", "f=50;#in Hz\n", "fdash=100;#alternations per minute\n", "\n", "#Calculations&Results\n", "fdash=100./60;#in Hz\n", "S=fdash/f;#unitless\n", "print \"Slip : \",round(S,3);\n", "Ns=120*f/P;#synchronous speed in rpm\n", "N=Ns-Ns*S;#in rpm\n", "print \"Rotor Speed(in rpm) : \",round(N);\n", "RotorCopperLoss=S*Pin_rotor*10**3;#in watts\n", "#print \"Rotor Copper Loss(in watts) : \",RotorCopperLoss;\n", "CopperLoss=RotorCopperLoss/phase;#in watts/phase\n", "print \"Copper Loss per phase(in watts) : \",round(CopperLoss);\n", "I2=60;#in Ampere\n", "R2=CopperLoss/I2**2;#in ohm\n", "print \"Rotorresistance per phase(in ohm) : \",round(R2,3);\n", "MechPowerDev=Pin_rotor*(1-S)*10**3/735.5;#in H.P.\n", "print \"Total mechanial power developed(in H.P.) : \",round(MechPowerDev,1);\n", "#Note : Some answers are not accurate in the book." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.033\n", "Rotor Speed(in rpm) : 967.0\n", "Copper Loss per phase(in watts) : 889.0\n", "Rotorresistance per phase(in ohm) : 0.247\n", "Total mechanial power developed(in H.P.) : 105.1\n" ] } ], "prompt_number": 150 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.25, Page 160" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "Efficiency=0.9;#unitless\n", "Output=50;#in H.P.\n", "\n", "#Calculations\n", "#formula : Efficiency=Output/(Output+Losses) \n", "Losses=((1-Efficiency)/Efficiency)*Output*735.5;#in watts\n", "Losses=round(Losses);#round\n", "#Let, Ststor Cu loss = Rotor Cu los = Iron loss=K\n", "#Mechanical Loss = Iron Loss/3 = K/3\n", "#TotalLosses=k+K+K+K/3\n", "K=Losses*3/10;#in watts\n", "Pin_rotor=Output*735.5+Losses;#in watts\n", "Slip=K/Pin_rotor;#unitless\n", "\n", "#Results\n", "print \"Slip :\",round(Slip,3);\n", "print \"or \",round((Slip*100)),\"%\"; #answer differes due to rouding" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.03\n", "or 3.0 %\n" ] } ], "prompt_number": 154 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.26, Page 160" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "Pin_rotor=20;#Power input of rotor in KW\n", "phase=3;#no. of phase\n", "P=6;#no. of poles\n", "f=50.;#in Hz\n", "N=960;#in rpm(Actual speed of motor)\n", "\n", "#Calculations\n", "Ns=120*f/P;#synchronous speed in rpm\n", "S=(Ns-N)/Ns;#unitless\n", "RotorCuLoss=S*Pin_rotor*10**3;#in watts\n", "RotorCuLoss=RotorCuLoss/phase;#in watts/phase\n", "R2=1./3;#in ohm(Rotor resistance per phase)\n", "I2=sqrt(RotorCuLoss/R2);#in Ampere\n", "\n", "#Result\n", "print \"Motor current per phase(in Ampere) :\",round(I2,1);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Motor current per phase(in Ampere) : 28.3\n" ] } ], "prompt_number": 155 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.27, Page 161" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "V=500;#in volt\n", "Pout_rotor=20;#Power output of rotor in H.P.\n", "phase=3;#no. of phase\n", "P=6;#no. of poles\n", "f=50;#in Hz\n", "N=995.;#in rpm(Actual speed of motor)\n", "cosfi=0.87;#powerfactor(unitless)\n", "\n", "#Calculations&Results\n", "Ns=120*f/P;#synchronous speed in rpm\n", "S=(Ns-N)/Ns;#unitless\n", "print \"Slip : \",S;\n", "RotorCuLoss=(S/(1-S))*Pout_rotor*735.5;#in watts\n", "print \"Rotor Cu Loss(in watts) : \",round(RotorCuLoss,2);\n", "Pin_rotor=RotorCuLoss/S;#in watts\n", "print \"Power input to rotor(in KW) :\",round((Pin_rotor/10**3),2);\n", "LineCurrent=Pin_rotor/(sqrt(3)*V*cosfi);#in Ampere\n", "print \"Line Current(in A) :\",round(LineCurrent,2);\n", "RotorFreq=S*f;#in Hz\n", "print \"Rotor Frequency(in Hz) :\",RotorFreq;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.005\n", "Rotor Cu Loss(in watts) : 73.92\n", "Power input to rotor(in KW) : 14.78\n", "Line Current(in A) : 19.62\n", "Rotor Frequency(in Hz) : 0.25\n" ] } ], "prompt_number": 156 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.28, Page 162" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "phase=3;#no. of phase\n", "Efficiency=90;#in %\n", "Speed=480;#in rpm\n", "VL=400;#in volt\n", "IL=75;#in Ampere\n", "cosfi=0.77;#powerfactor(unitless)\n", "d=0.75;#diameter of pulley in meter\n", "\n", "#Calculations\n", "Pin_motor=sqrt(3)*VL*IL*cosfi;#Power input of motor in watts\n", "OutputPower=Pin_motor*Efficiency/100;#in watts\n", "Omega=Speed*2*pi/60;#angular speed in radians/sec\n", "Torque=OutputPower/Omega;#in N-meter\n", "Torque=Torque/9.81;#in Kg-meter\n", "PullOnBelt=Torque/(d/2);#in Kg\n", "\n", "#Result\n", "print \"Pull On Belt(in Kg.) : \",round(PullOnBelt,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pull On Belt(in Kg.) : 194.74\n" ] } ], "prompt_number": 157 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.29, Page 162" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "#At 3% slip\n", "OutputPower=24;#in KW(At 3% slip)\n", "S=3.;#in %\n", "\n", "#Calculations\n", "Efficiency=(1-S/100);#unitless\n", "InputPower=OutputPower/Efficiency;#in KW\n", "#At 5% slip\n", "S=5;#in %\n", "Efficiency=(1-S/100);#unitless\n", "OutputPower=InputPower*Efficiency;#in KW\n", "\n", "#Result\n", "print \"Mechanical power output at a slip of 5%(in KW) : \",round(OutputPower,1);\n", "#answer differs due to rounding" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mechanical power output at a slip of 5%(in KW) : 24.7\n" ] } ], "prompt_number": 158 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.30, Page 162" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "#At 50% speed of synchronous speed\n", "S=50.;#in %\n", "UsefulOutput=55;#in H.P.\n", "MechLoss=2;#in H.P.\n", "StatorLoss=13.5;#in KW\n", "\n", "#Calculations&Results\n", "Pout_rotor=UsefulOutput+MechLoss;#in H.P.\n", "Pout_rotor=Pout_rotor*0.7355;#in KW\n", "Efficiency=(1-S/100);#unitless\n", "RotorInputPower=Pout_rotor/Efficiency;#in KW\n", "RotorCuLoss=RotorInputPower-Pout_rotor;#in KW\n", "print \"Cu Loss in the rotor circuit(in KW) :\",round(RotorCuLoss,2);\n", "TotalLosses=StatorLoss+RotorCuLoss+MechLoss*0.7355;#in KW\n", "MotorEfficiency=UsefulOutput*0.7355/(UsefulOutput*0.7355+TotalLosses);\n", "print \"Motor Efficiency(in %) : \",round((MotorEfficiency*100),1);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Cu Loss in the rotor circuit(in KW) : 41.92\n", "Motor Efficiency(in %) : 41.6\n" ] } ], "prompt_number": 159 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.31, Page 163" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, sqrt, sin, cos\n", "\n", "#Given data :\n", "P=4;#no. of poles\n", "phase=3;#no. of phase\n", "N=1440.;#in rpm(Actual speed of motor)\n", "Power_dev=10;#Power developed in H.P.\n", "VL=400;#in volt\n", "cosfi=0.8;#powerfactor(unitless)\n", "f=50;#in Hz\n", "\n", "#Calculations&Results\n", "Ns=120*f/P;#in rpm\n", "S=(Ns-N)/Ns;#fractional slip(unitless)\n", "print \"Slip :\",S;\n", "Omega=N*2*pi/60;#angular speed in radians/sec\n", "Torque=Power_dev*735.5/Omega;#in N-meter\n", "Torque=Torque/9.81;#in Kg-meter\n", "print \"Torque(in Kg-meter) :\",round(Torque,2);\n", "RotorCuLoss=(S/(1-S))*Power_dev*735.5;#in watts\n", "print \"Rotor Cu Loss per phase(in watts) : \",round((RotorCuLoss/3),1);\n", "Pin_rotor=RotorCuLoss/S;#in watts\n", "print \"Power input to rotor(in KW) :\",round((Pin_rotor/10**3),2);\n", "LineCurrent=Pin_rotor/(sqrt(3)*VL*cosfi);#in Ampere\n", "print \"Line Current(in A) :\",round(LineCurrent,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.04\n", "Torque(in Kg-meter) : 4.97\n", "Rotor Cu Loss per phase(in watts) : 102.2\n", "Power input to rotor(in KW) : 7.66\n", "Line Current(in A) : 13.82\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.32, Page 164" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "VL=440;#in volt\n", "f=50;#in Hz\n", "P=6;#no. of poles\n", "phase=3;#no. of phase\n", "Pin_rotor=80;#in KW\n", "fr=100;#revolutions/min\n", "\n", "#Calculations&Results\n", "fr=100./60;#in Hz\n", "S=fr/f;#slip(unitless)\n", "print \"Slip : \",round(S,3);\n", "Ns=120*f/P;#in rpm\n", "N=Ns*(1-S);#in rpm(Speed of Rotor)\n", "print \"Rotor speed(in rpm) : \",round(N);\n", "RotorCuLoss=S*Pin_rotor*10**3;#in watts\n", "print \"Rotor Cu Loss per phase(in watts) : \",round(RotorCuLoss/phase);\n", "I2=65;#in Ampere\n", "R2=(RotorCuLoss/phase)/I2**2;#in ohm\n", "print \"Rotor resistance per phase(in ohm) : \",round(R2,2);\n", "Pout_rotor=Pin_rotor-RotorCuLoss/10**3;#in KW\n", "print \"Output power of rotor(in H.P.) : \",round((Pout_rotor/0.735),1);\n", "#Note : answers of few part are not accurate in the book." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.033\n", "Rotor speed(in rpm) : 967.0\n", "Rotor Cu Loss per phase(in watts) : 889.0\n", "Rotor resistance per phase(in ohm) : 0.21\n", "Output power of rotor(in H.P.) : 105.2\n" ] } ], "prompt_number": 161 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.33, Page 165" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "VL=440;#in volt\n", "f=50.;#in Hz\n", "P=6;#no. of poles\n", "phase=3;#no. of phase\n", "Pin_rotor=20;#in KW\n", "N=960.;#in rpm(Speed of Motor)\n", "\n", "#Calculations\n", "Ns=120*f/P;#in rpm\n", "S=(Ns-N)/Ns;#slip(unitless)\n", "RotorCuLoss=S*Pin_rotor*10**3;#in watts\n", "RotorCuLoss=RotorCuLoss/phase;#in watts/phase\n", "R2=1./3;#Rotor Resistance in ohm per phase\n", "I2=sqrt(RotorCuLoss/R2)\n", "\n", "#Result\n", "print \"Motor current per phase(in Ampere) :\",round(I2,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Motor current per phase(in Ampere) : 28.28\n" ] } ], "prompt_number": 162 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.34, Page 166" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, sqrt, sin, cos\n", "\n", "#Given data :\n", "VL=500;#in volt\n", "f=50;#in Hz\n", "P=6;#no. of poles\n", "phase=3;#no. of phase\n", "Pout_rotor=20;#in H.P.\n", "cosfi=0.87;#power factor\n", "N=995.;#in rpm(Speed of Motor)\n", "\n", "#Calculations&Results\n", "Ns=120*f/P;#in rpm\n", "S=(Ns-N)/Ns;#slip(unitless)\n", "print \"Slip : \",S;\n", "RotorCuLoss=(S/(1-S))*Pout_rotor*735.5;#in watts\n", "print \"Rotor Cu Loss(in watts) :\",round(RotorCuLoss,2);\n", "Pin_rotor=RotorCuLoss/S;#in watts\n", "print \"Power input to rotor(in KW) :\",round((Pin_rotor/10**3),3);\n", "IL=Pin_rotor/(sqrt(3)*VL*cosfi);#in Ampere\n", "print \"Line current (in Ampere) :\",round(IL,2);\n", "Rotorfreq=S*f;#in Hz\n", "print \"Rotor frequency(in Hz) :\",round(Rotorfreq,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.005\n", "Rotor Cu Loss(in watts) : 73.92\n", "Power input to rotor(in KW) : 14.784\n", "Line current (in Ampere) : 19.62\n", "Rotor frequency(in Hz) : 0.25\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.35, Page 166" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "f=50;#in Hz\n", "P=4;#no. of poles\n", "phase=3;#no. of phase\n", "Efficiency=85.;#in %\n", "OutputPower=17.;#in KW\n", "OutputPower=17*10**3;#in watts\n", "StatorLosses=900.;#in watt\n", "MechLosses=1100;#in watt\n", "\n", "#Calculations&Results\n", "Pin=OutputPower/(Efficiency/100);#in watts\n", "#Stator input or rotor input :\n", "Pin_rotor=Pin-StatorLosses;#in watts\n", "P_MechDev=OutputPower+MechLosses;#in watts\n", "RotorCuLosses=Pin_rotor-P_MechDev;#in watts\n", "S=RotorCuLosses/Pin_rotor;#slip(unitless)\n", "print \"Slip :\",round(S,3);\n", "Ns=120*f/P\n", "N=Ns*(1-S);#in rpm(Speed of Motor)\n", "Omega=2*pi*N/60;#angular speed in rad/sec\n", "Torque=P_MechDev/Omega;#in Nm\n", "print \"Torque developed(in Nm) :\",round(Torque,1);\n", "Tm=OutputPower/Omega;#in Nm\n", "Tm=Tm/9.81;#in Kg-meter\n", "print \"Torque at the shaft(in Kg-meter) :\",round(Tm,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.052\n", "Torque developed(in Nm) : 121.6\n", "Torque at the shaft(in Kg-meter) : 11.64\n" ] } ], "prompt_number": 164 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.36, Page 168" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "VL=500;#in volt\n", "f=50;#in Hz\n", "P=6;#no. of poles\n", "phase=3;#no. of phase\n", "Pin_stator=50;#in KW\n", "Statorlosses=2;#in KW\n", "MechLosses=1;#in KW\n", "\n", "#Calculations&Results\n", "Pin_rotor=Pin_stator-Statorlosses;#in KW\n", "S=3.;#in %\n", "RotorI2RLoss=(S/100)*Pin_rotor;#in KW\n", "print \"Rotor I2R Loss(in KW) :\",RotorI2RLoss;\n", "print \"Rotor core loss at 3% slip is very less and can be neglected.\";\n", "Power_dev=Pin_rotor-RotorI2RLoss;#in KW\n", "print \"Power developed by the rotor(in H.P.) : \",round((Power_dev/0.7355),1);\n", "Outputpower=Power_dev-MechLosses;#in KW\n", "Efficiency=Outputpower/Pin_stator;#unitless\n", "print \"Efficiency of the motor(in %) :\",(Efficiency*100);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rotor I2R Loss(in KW) : 1.44\n", "Rotor core loss at 3% slip is very less and can be neglected.\n", "Power developed by the rotor(in H.P.) : 63.3\n", "Efficiency of the motor(in %) : 91.12\n" ] } ], "prompt_number": 165 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.37, Page 168" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "f=50;#in Hz\n", "P=4;#no. of poles\n", "phase=3;#no. of phase\n", "MotorOutput=20;#in H.P.\n", "MotorOutput=20*735.5;#in watts\n", "S=4.;#full load slip in %\n", "MechLosses=500;#in watts\n", "\n", "#Calculations&Results\n", "Pdev_rotor=MotorOutput+MechLosses;#in watts\n", "S=S/100;#fractional slip\n", "RotorI2RLoss=(S/(1-S))*Pdev_rotor;#in watts\n", "print \"Rotor I2R Loss(in watts) :\",RotorI2RLoss;\n", "Ns=120*f/P;#in rpm\n", "Nr=Ns-Ns*S;#in rpm\n", "print \"Rotor speed(in rpm) :\",Nr;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rotor I2R Loss(in watts) : 633.75\n", "Rotor speed(in rpm) : 1440.0\n" ] } ], "prompt_number": 80 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.38, Page 169" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, sqrt, sin, cos\n", "\n", "#Given data :\n", "f=50;#in Hz\n", "P=6;#no. of poles\n", "phase=3;#no. of phase\n", "R2=0.02;#in ohm\n", "X2=0.1;#in ohm\n", "\n", "#Calculations\n", "S=R2/X2;#slip(unitless)\n", "Ns=120*f/P;#in rpm\n", "Nr=Ns-Ns*S;#in rpm\n", "#At starting S=1\n", "S=1;#slip\n", "#Formula : T=K*S*R2/(R2^2+X2^2)\n", "#Starting torque, Tst=K*R2/(R2^2+S^2*X2^2)\n", "#Maximum torque, Tm=K/(2*X2)\n", "#Tst=(2/3)*Tm : gives a equation\n", "#100*R2^2-30*R2+1=0\n", "a=100;b=-30;c=1;\n", "R21=(-b+sqrt(b**2-4*a*c))/(2*a);#in ohm\n", "R22=(-b-sqrt(b**2-4*a*c))/(2*a);#in ohm\n", "#This R2 is the value of rotor circuit resistance.\n", "RotWinResistance=0.02;#in ohm per phase\n", "Extra_R1=R21-RotWinResistance;#in ohm\n", "Extra_R2=R22-RotWinResistance;#in ohm\n", "\n", "#Result\n", "print \"Extra Resistance(in ohm) : \",round(Extra_R1,3),\" ohm or \",round((Extra_R2),3),\" ohm.\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Extra Resistance(in ohm) : 0.242 ohm or 0.018 ohm.\n" ] } ], "prompt_number": 166 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.39, Page 170" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "f=50;#in Hz\n", "P=4;#no. of poles\n", "phase=3;#no. of phase\n", "MotorShaftOutput=20;#in H.P.\n", "\n", "#Calculations&Results\n", "MotorShaftOutput=20*735.5;#in watts\n", "MechLosses=MotorShaftOutput*2/100;#in watts(2% of the output)\n", "Pdev_rotor=MotorShaftOutput+MechLosses;#in watts\n", "S=3.;#slip in %\n", "S=S/100;#fractional slip\n", "RotorI2RLoss=(S/(1-S))*Pdev_rotor;#in watts\n", "print \"Rotor I2R Loss(in watts) :\",round(RotorI2RLoss);\n", "print \"Rotor iron loss at 3% slip is very small and can be neglected.\";\n", "RotorInput=Pdev_rotor+RotorI2RLoss;#in watts\n", "print \"Rotor Input(in Watts) :\",round(RotorInput,1);\n", "Ns=120*f/P;#in rpm\n", "Nr=Ns-Ns*S;#in rpm\n", "Nr=Nr/60;#in rps\n", "T=MotorShaftOutput/(2*pi*Nr);#in Nm\n", "print \"Output torque(in Nm) : \",round(T,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rotor I2R Loss(in watts) : 464.0\n", "Rotor iron loss at 3% slip is very small and can be neglected.\n", "Rotor Input(in Watts) : 15468.2\n", "Output torque(in Nm) : 96.54\n" ] } ], "prompt_number": 167 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.40, Page 171" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "VL=500;#in volt\n", "f=50;#in Hz\n", "P=6;#no. of poles\n", "phase=3;#no. of phase\n", "Nr=975.;#in rpm\n", "\n", "#Calculations&Results\n", "Ns=120*f/P;#in rpm\n", "S=(Ns-Nr)/Ns;#slip\n", "print \"Slip :\",S;\n", "Pin_stator=40;#in KW\n", "StatorLosses=1;#in KW\n", "Pin_rotor=Pin_stator-StatorLosses;#in KW\n", "RotorCuLosses=S*Pin_rotor;#in KW\n", "print \"Rotor Cu Losses(in KW) :\",RotorCuLosses;\n", "RotorOutput=Pin_rotor-RotorCuLosses;#in KW\n", "OutputHP=RotorOutput/0.735;#in H.P.\n", "print \"Output Horse Power : \",round(OutputHP,2);\n", "Efficiency=RotorOutput/Pin_stator;#unitless\n", "print \"Efficiency(in %) :\",round(Efficiency*100);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.025\n", "Rotor Cu Losses(in KW) : 0.975\n", "Output Horse Power : 51.73\n", "Efficiency(in %) : 95.0\n" ] } ], "prompt_number": 168 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.41, Page 172" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "VL=440;#in volt\n", "f=50.;#in Hz\n", "P=6;#no. of poles\n", "phase=3.;#no. of phase\n", "\n", "#Calculations&Results\n", "Ns=120*f/P;#in rpm\n", "fr=120;#alternations per minute\n", "fr=fr/60;#in Hz\n", "S=fr/f;#slip\n", "print \"Slip : \",S;\n", "Nr=Ns-S*Ns;#in rpm\n", "print \"Rotor speed(in rpm) :\",Nr;\n", "Rotor_input=80;#in KW\n", "RotorCuLoss=S*Rotor_input;#in KW\n", "print \"Rotor Cu Loss per phase(in watts) :\",round((RotorCuLoss*10**3)/phase);\n", "P_Mechdev=Rotor_input*10**3-RotorCuLoss*10**3;#in watts\n", "P_Mechdev=P_Mechdev/735.5;#in H.P.\n", "print \"Mechanical power devloped(in H.P.) :\",round(P_Mechdev,1);\n", "Ir=60;#in Ampere\n", "R2=(RotorCuLoss*10**3/phase)/Ir**2;#in ohm\n", "print \"Rotor resistance per phase(in ohm) :\",round(R2,3);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slip : 0.04\n", "Rotor speed(in rpm) : 960.0\n", "Rotor Cu Loss per phase(in watts) : 1067.0\n", "Mechanical power devloped(in H.P.) : 104.4\n", "Rotor resistance per phase(in ohm) : 0.296\n" ] } ], "prompt_number": 169 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.43, Page 175 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "f=50.;#in Hz\n", "P=6;#no. of poles\n", "R2=0.2;#rotor resistance per phase in ohm\n", "Nr=960;#in rpm\n", "Nr_dash=600;#in rpm\n", "\n", "#Calculations\n", "Ns=120*f/P;#in rpm\n", "S=(Ns-Nr)/Ns;#slip(unitless)\n", "Sdash=(Ns-Nr_dash)/Ns;#slip(unitless)\n", "#Let the new value of resistance is R2dash=(R+0.2)\n", "R=R2*(Sdash/S)-R2;#Resistance to be added in ohm\n", "\n", "#Result\n", "print \"Resistance to be added(in ohm) : \",R;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance to be added(in ohm) : 1.8\n" ] } ], "prompt_number": 91 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.44, Page 176" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "f=50;#in Hz\n", "P=6;#no. of poles\n", "phase=3;#no. of phase\n", "RotorIntResistance=0.1;#in ohm per phase\n", "X2=1;#in ohm/phase\n", "\n", "#Calculation\n", "Rext=X2-RotorIntResistance;#in ohm\n", "\n", "#Result\n", "print \"External resistance to be included(in ohm/phase) : \",Rext;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "External resistance to be included(in ohm/phase) : 0.9\n" ] } ], "prompt_number": 92 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.45, Page 176" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "f=50.;#in Hz\n", "P=6.;#no. of poles\n", "phase=3.;#no. of phase\n", "R2=0.2;#rotor resistance per phase in ohm\n", "N1=960.;#Full load speed in rpm\n", "\n", "#Calculations\n", "Ns=120*f/P;#in rpm\n", "S1=(Ns-N1)/Ns;#Full load slip(unitless)\n", "N2=N1*(1-10./100);#New speed in rpm(reduced 10%)\n", "S2=(Ns-N2)/Ns;#New slip(unitless)\n", "#Formula : S=RotorCuLoss/Pin_rotor=3*I2^2*R2/Pin_rotor\n", "#Let the additional resistance is R\n", "R=R2*S2/S1-R2;#Resistance to be added in ohm\n", "\n", "#Result\n", "print \"Additional Rotor Resistance(in ohm) : \",R;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Additional Rotor Resistance(in ohm) : 0.48\n" ] } ], "prompt_number": 97 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.46, Page 180" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "R2inner=0.4;#in ohm\n", "X2inner=2;#in ohm \n", "R2outer=2;#in ohm\n", "X2outer=0.4;#in ohm \n", "#At standstill :\n", "S=1;#unitless\n", "\n", "#Calculations&Results\n", "Ratio=(R2outer*S/(R2outer**2+S**2*X2outer**2))/(R2inner*S/(R2inner**2+S**2*X2inner**2));#unitless\n", "print \"Ratio of torque produced by two cages at standstill : \",Ratio;\n", "#At Full load :\n", "S=5;#in %\n", "S=5./100;#fractional\n", "Ratio=(R2outer*S/(R2outer**2+S**2*X2outer**2))/(R2inner*S/(R2inner**2+S**2*X2inner**2));#unitless\n", "print \"Ratio of torque produced by two cages at full load(slip=5%) : \",round(Ratio,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of torque produced by two cages at standstill : 5.0\n", "Ratio of torque produced by two cages at full load(slip=5%) : 0.21\n" ] } ], "prompt_number": 171 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.47, Page 187" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Given data :\n", "Output=10;#in H.P.\n", "Output=Output*735.5;#in watts\n", "cosfi=0.8;#unitless\n", "ETA=0.83;#unitless\n", "ISCbyIFL=3.5;#ratio of SC current to full load current\n", "VL=500;#in volt\n", "\n", "#Calculations\n", "Input=Output/ETA;#in watts\n", "IFL=Input/(sqrt(3)*VL*cosfi);#in Ampere\n", "ISC=IFL*ISCbyIFL;#in Ampere\n", "Is=ISC/3;#in Ampere\n", "\n", "#Result\n", "print \"Strting current(in Ampere) :\",round(Is,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Strting current(in Ampere) : 14.92\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.48, Page 187" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "ISCbyIFL=5;#ratio of SC current to full load current\n", "S=0.04;#Full load slip\n", "\n", "#Calculations&Results\n", "#(i) for star delta starter : \n", "print \"for star delta starter : \";\n", "Ratio=(1./3)*(ISCbyIFL)**2*S;#Ratio of starting torque to full load torque\n", "print \"Starting torque is \",round((Ratio*100),2),\"% of full load torque.\";\n", "#(i) for auto transformer starter :\n", "print \"for auto transformer starter : \";\n", "K=50./100;#tappings\n", "Ratio=K**2*(ISCbyIFL)**2*S;#Ratio of starting torque to full load torque\n", "print \"Starting torque is \",(Ratio*100),\"% of full load torque.\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "for star delta starter : \n", "Starting torque is 33.33 % of full load torque.\n", "for auto transformer starter : \n", "Starting torque is 25.0 % of full load torque.\n" ] } ], "prompt_number": 173 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.49, Page 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "ISCbyIFL=4;#ratio of SC current to full load current\n", "TsBYTf=1./4;#ratio of atarting torque to full load torque\n", "Slip=3;#in %\n", "Slip=3./100;#in fraction\n", "\n", "#Calculations\n", "#Formula : TsBYTf=Percent_Tapping^2*ISCbyIFL^2*Slip\n", "tapping=sqrt(TsBYTf/(Slip*ISCbyIFL**2));#in %\n", "\n", "#Result\n", "print \"Tapping(in %) :\",round((tapping*100),1);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tapping(in %) : 72.2\n" ] } ], "prompt_number": 174 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.50, Page 189" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "ISCbyIFL=5.;#ratio of SC current to full load current\n", "Slip=5;#in %\n", "Slip=5./100;#in fraction\n", "\n", "#Calculations\n", "#Formula : 3*IFL=K^2*ISC\n", "K=sqrt(1./(ISCbyIFL/3));#unitless\n", "TsBYTfl=K**2*(ISCbyIFL)**2*Slip;#ratio of starting torque to full load torque\n", "\n", "#Result\n", "print \"Starting torque is \",(TsBYTfl*100),\"% of full load torque.\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Starting torque is 75.0 % of full load torque.\n" ] } ], "prompt_number": 175 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.51, Page 189" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "print \"Star delta starter :\";\n", "ISCbyIFL=6;#ratio of SC current to full load current\n", "Slip=4;#in %\n", "Slip=4./100;#in fraction\n", "\n", "#Calculations&Results\n", "TsBYTfl=(1./3)*(ISCbyIFL)**2*Slip;#ratio of starting torque to full load torque\n", "print \"Starting torque is \",(TsBYTfl*100),\"% of full load value.\";\n", "print \"For an auto transformer :\";\n", "K=70.70;#in %\n", "K=70.70/100;#in fraction\n", "TsBYTfl=K**2*(ISCbyIFL)**2*Slip;#ratio of starting torque to full load torque\n", "print \"Starting torque is \",round(TsBYTfl*100),\"% of full load torque.\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Star delta starter :\n", "Starting torque is 48.0 % of full load value.\n", "For an auto transformer :\n", "Starting torque is 72.0 % of full load torque.\n" ] } ], "prompt_number": 176 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.52, Page 190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "V=400.;#in volt\n", "S=3.5;#in %\n", "S=3.5/100;#in fraction\n", "VL=92;#in volts\n", "\n", "#Calculations&Results\n", "#ISC=(V/VL)*IFL;#in Ampere\n", "ISCbyIFL=V/VL;#ratio of SC current to full load current\n", "#2*IFL=K^2*ISC imples that 2*IFL=K^2*(V/VL)*IFL\n", "K=sqrt(2./(V/VL));#in fraction\n", "print \"Necessary tapping(in %) :\",round((K*100),1);\n", "TsBYTfl=K**2*(ISCbyIFL)**2*S;#ratio of starting torque to full load torque\n", "print \"Starting torque is \",round((TsBYTfl*100),1),\"% of full load value.\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Necessary tapping(in %) : 67.8\n", "Starting torque is 30.4 % of full load value.\n" ] } ], "prompt_number": 179 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.53, Page 190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "ISCbyIFL=4;#ratio of SC current to full load current\n", "ISbyIFL=2;#ratio of Supply current to full load current\n", "S=2.5;#in %\n", "S=2.5/100;#in fraction\n", "\n", "#Calculations\n", "#Formula : ISbyIFL=(1/K^2)*ISCbyIFL\n", "K=sqrt(ISCbyIFL/ISbyIFL);#in fraction\n", "print \"Auto Transormation ratio :\",round(K,2);\n", "TsBYTfl=(1./K**2)*(ISCbyIFL)**2*S;#ratio of starting torque to full load torque\n", "\n", "#Results\n", "print \"Ratio of starting torque to full load torque :\",TsBYTfl;\n", "print \"or Starting torque is \",(TsBYTfl*100),\"% of full load value.\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Auto Transormation ratio : 1.41\n", "Ratio of starting torque to full load torque : 0.2\n", "or Starting torque is 20.0 % of full load value.\n" ] } ], "prompt_number": 180 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.54, Page 191" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "ISCbyIFL=4;#ratio of SC current to full load current\n", "S=3;#in %\n", "S=3./100;#in fraction\n", "TsBYTfl=1./4;#ratio of starting torque to full load torque\n", "\n", "#Calculations\n", "#Formula : TsBYTfl=ISCbyIFL^2*K^2*S\n", "K=sqrt(TsBYTfl/(ISCbyIFL**2*S));#in fraction\n", "\n", "#Result\n", "print \"Auto Transormation ratio(in %) :\",round((K*100),2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Auto Transormation ratio(in %) : 72.17\n" ] } ], "prompt_number": 181 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.55, Page 191" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Given data :\n", "Output=3;#in H.P.\n", "Output=3*735.5;#in watts\n", "Efficiency=0.83;#unitless\n", "cosfi=0.8;#power factor\n", "\n", "#Calculations\n", "Vl=500;#in volt\n", "Input=Output/Efficiency;#in watts\n", "#Formula : Input=sqrt(3)*Vl*Il*cosfi\n", "Il=Input/(sqrt(3)*Vl*cosfi);#in Ampere\n", "ISCbyIFL=3.5;#ratio of SC current to full load current\n", "ISC=ISCbyIFL*Il;#in Ampere\n", "LineCurrent=ISC/3;#in Ampere(for star delta starter)\n", "\n", "#Result\n", "print \"Line Current(in Ampere) :\",round(LineCurrent,2);\n", "#Note : Ans in the book is not accurate." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Line Current(in Ampere) : 4.48\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.56, Page 192" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Given data :\n", "Output=15;#in H.P.\n", "Output=15*735.5;#in watts\n", "Vl=400;#in volt\n", "ISCat200=40;#in Ampere(at 200 volt)\n", "Efficiency=0.88;#unitless\n", "cosfi=0.85;#power factor\n", "\n", "#Calculations\n", "ISCat400=ISCat200*(400./200);#in Ampere(at 400 volt)\n", "Input=Output/Efficiency;#in watts\n", "Ifl=Input/(sqrt(3)*Vl*cosfi);#in Ampere\n", "#starting line current with star delta starter\n", "Is=ISCat400/3;#in Ampere\n", "Ratio=Is/Ifl;#ratio of starting current to full load current\n", "\n", "#Result\n", "print \"Ratio of line current at starting to full load current :\",round(Ratio,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of line current at starting to full load current : 1.25\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.57, Page 192" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Given data :\n", "#With star delta starter : \n", "TstBYTfl=0.35;#ratio of starting torque to full load torque\n", "IstBYIfl=1.75;#ratio of starting current to full load current\n", "\n", "#Calculations&Results\n", "ISCBYIs=sqrt(3);#ratio of SC current to starting current\n", "ISCBYIfl=sqrt(3)*IstBYIfl;#ratio of SC current to full load current\n", "#Formula : TstBYTfl=(ISCBYIfl)^2*S\n", "S=TstBYTfl/(ISCBYIfl)**2;#in fraction\n", "print \"Full load Slip : \",round(S,3);\n", "#With auto transformer with winding in delta : \n", "Ip=sqrt(3)*1.750*0.8;#full voltage phase current in Ampere\n", "IlBYIf=4.2;#ratio of Line current to full load current\n", "Ratio=IlBYIf**2*S;#ratio of starting current to full load current\n", "print \"Ratio of line current at starting to full load current :\",round(Ratio,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Full load Slip : 0.038\n", "Ratio of line current at starting to full load current : 0.67\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.58, Page 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "f=50;#in Hz\n", "P=4;#no. of poles\n", "phase=3;#no. of phase\n", "R2=0.25;#in ohm per phase\n", "S=2;#in %\n", "S=2./100;#in fraction\n", "\n", "#Calculations\n", "Ns=120*f/P;#in rpm\n", "Nr=Ns-Ns*S;#in rpm\n", "#When speed reduced to 10%\n", "NewSpeed=Nr*90/100;#in rpm\n", "Sdash=(Ns-NewSpeed)/Ns;#in fraction\n", "R2dash=(Sdash/S)*R2;#in ohm per phase\n", "R=R2dash-R2;#in ohm\n", "\n", "#Result\n", "print \"Value of resistance to be added(in ohm) :\",R;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of resistance to be added(in ohm) : 1.225\n" ] } ], "prompt_number": 114 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.59, Page 197" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "f=50;#in Hz\n", "P=4;#no. of poles\n", "R2=0.25;#in ohm per phase\n", "N=1440.;#in rpm at full load\n", "NewSpeed=1200;#in rpm\n", "\n", "#Calculations&Results\n", "Ns=120*f/P;#in rpm\n", "S=(Ns-N)/Ns;#in %\n", "NewS=(Ns-NewSpeed)/Ns;#in fraction\n", "S1=S;S2=NewS;#slip new and old\n", "#Torque remaining same : S1/R2=S2/(R2+R)\n", "R=S2*R2/S1-R2;#in ohm\n", "print \"External resistance per phase(in ohm) :\",R; #incorrect answer in textbook\n", "Nr=Ns-Ns*S;#in rpm\n", "#If S1 is taken as 0.03 and S2 as 0.127\n", "S1=0.03;#slip in fraction\n", "S2=0.127;#slip in fraction\n", "R=S2*R2/S1-R2;#in ohm\n", "print \"External resistance per phase(in ohm) :\",round(R,3);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "External resistance per phase(in ohm) : -0.25\n", "External resistance per phase(in ohm) : 0.808\n" ] } ], "prompt_number": 194 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.60, Page 198" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "f=50;#in Hz\n", "P=4;#no. of poles\n", "phase=3;#no. of phase\n", "S=4;#in %\n", "S=4./100;#in fraction\n", "\n", "#Calculations&Results\n", "Ns=120*f/P;#in rpm\n", "N1=Ns-Ns*S;#in rpm\n", "#When speed reduced to 10%\n", "N2=N1*85/100;#in rpm(NewSpeed)\n", "print \"New speed(in rpm) :\",N2;\n", "#New speed is reduced by 15 %\n", "Sdash=(Ns-N2)/Ns;#in fraction\n", "print \"New Slip : \",Sdash;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "New speed(in rpm) : 1224.0\n", "New Slip : 0.184\n" ] } ], "prompt_number": 118 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.61, Page 202" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given data :\n", "f=50;#in Hz\n", "P=4;#no. of poles\n", "phase=3;#no. of phase\n", "Pin=60;#in KW\n", "StatorLoss=1.2;#in KW\n", "WindingLoss=1.8;#in KW\n", "S=4;#in %\n", "S=4./100;#in fraction\n", "\n", "#Calculations&Results\n", "Ns=120*f/P;#in rpm\n", "Nr=Ns-Ns*S;#in rpm\n", "print \"Rotor speed(in rpm) :\",Nr;\n", "Pin_rotor=Pin-StatorLoss;#in KW\n", "RotorCuLoss=S*Pin_rotor;#in KW\n", "print \"Rotor Cu Loss(in KW) : \",RotorCuLoss;\n", "Pout_rotor=Pin_rotor-WindingLoss-RotorCuLoss;#in KW\n", "Efficiency=(Pout_rotor/Pin)*100;#in %\n", "print \"Efficiency(in %) :\",round(Efficiency);\n", "HP=Pout_rotor*10**3/735.5;#in H.P.\n", "print \"Horse Power(inH.P.) :\",round(HP,2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rotor speed(in rpm) : 1440.0\n", "Rotor Cu Loss(in KW) : 2.352\n", "Efficiency(in %) : 91.0\n", "Horse Power(inH.P.) : 74.3\n" ] } ], "prompt_number": 195 } ], "metadata": {} } ] }