{ "metadata": { "name": "", "signature": "sha256:0628c82e0a3c22058af365d46ac02e72480c2ca3ef49b0c17613dda76ae1e83e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER23 : PRINCIPLES OF AUTOMATIC CONTROL" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E01 : Pg 837" ] }, { "cell_type": "code", "collapsed": false, "input": [ "deltaGi = 420. - 380.; # variation in the without feedback gain\n", "Gi = 400.; # without feedback gain\n", "T = 400.; # transfer function of the closed loop system\n", "# (variation in T)/T = (change in G)/G * (1/ 1+H*G) = 0.02\n", "# 1 + H*G = R\n", "R = (deltaGi/Gi)/0.02; \n", "\n", "G = T*R; # new direct transmission gain with feedback \n", "H = (G/T - 1.)/G; # feedback factor \n", "\n", "print '%s %.2f' %(\"new direct transmission gain with feedback = \",G)\n", "print '%s %.2e' %(\"feedback factors = \",H)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "new direct transmission gain with feedback = 2000.00\n", "feedback factors = 2.00e-03\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }