{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 45: Transients and Laplace\n", "transforms

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 903

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate (a) the initial value of current flowing, \n", "#(b) the value of current 150 ms after connection, \n", "#(c) the value of capacitor voltage 80 ms after connection, and \n", "#(d) the time after connection when the resistor voltage is 35 V.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "C = 500E-9;# in Farad\n", "R = 100000;# in Ohm\n", "V = 50;# in VOlts\n", "ti = 0.15;# in sec\n", "tc = 0.08;# in sec\n", "Vrt = 35;# in Volts\n", "\n", " #calculation:\n", " #Initial current, \n", "i0 = (V/R)\n", " #when time t = 150ms current is\n", "i150 = (V/R)*math.e**(-1*ti/(R*C))\n", " #capacitor voltage, Vc\n", "Vc = V*(1 - math.e**(-1*tc/(R*C)))\n", " #time, t\n", "tvr = -1*R*C*math.log(Vrt/V)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n initial value of current flowing is \",round(i0*1E3,2),\"mA\"\n", "print \"\\n current flowing at t = 150ms is \",round(i150*1E6,2),\"uA\"\n", "print \"\\n value of capacitor voltage at t = 80ms is \",round(Vc,2),\" V\"\n", "print \"\\n the time after connection when the resistor voltage is 35 V is \",round(tvr*1E3,2),\"msec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " initial value of current flowing is 0.5 mA\n", "\n", " current flowing at t = 150ms is 24.89 uA\n", "\n", " value of capacitor voltage at t = 80ms is 39.91 V\n", "\n", " the time after connection when the resistor voltage is 35 V is 17.83 msec\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 905

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the p.d. across the capacitor after 20 s\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "C = 5E-6;# in Farad\n", "R = 2000000;# in Ohm\n", "V = 200;# in VOlts\n", "tc = 20;# in sec\n", "\n", " #calculation:\n", " #capacitor voltage, Vc\n", "Vc = V*(math.e**(-1*tc/(R*C)))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n value of capacitor voltage at t = 20s is \",round(Vc,2),\" V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " value of capacitor voltage at t = 20s is 27.07 V" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 907

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the final value of current, (b) the value of current after 4 ms, \n", "#(c) the value of the voltage across the resistor after 6 ms,\n", "#(d) the value of the voltage across the inductance after 6 ms, and \n", "#(e) the time when the current reaches 15 A.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "L = 0.05;# in Henry\n", "R = 5;# in Ohm\n", "V = 110;# in VOlts\n", "ti = 0.004;# in sec\n", "tvr = 0.006;# in sec\n", "tvl = 0.006;# in sec\n", "it = 15;# in amperes\n", "\n", " #calculation:\n", " #steady state current i\n", "i = V/R\n", " #when time t = 4ms current is\n", "i4 = (V/R)*(1 - math.e**(-1*ti*R/L))\n", " #resistor voltage, VR\n", "VR6 = V*(1 - math.e**(-1*tvr*R/L))\n", " #inductor voltage, VL\n", "VL6 = V*(math.e**(-1*tvl*R/L))\n", " #time, t\n", "ti = (-1*L/R)*math.log(1 - it*R/V)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n steady state current i is \",round(i,2),\" A\"\n", "print \"\\n when time t = 4ms current is is \",round(i4,2),\" A\"\n", "print \"\\n value of resistor voltage at t = 6ms is \",round(VR6,2),\" V\"\n", "print \"\\n value of inductor voltage at t = 6ms is \",round(VL6,2),\" V\"\n", "print \"\\n the time after connection when the current is 15 V is \",round(ti,5),\" sec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " steady state current i is 22.0 A\n", "\n", " when time t = 4ms current is is 7.25 A\n", "\n", " value of resistor voltage at t = 6ms is 49.63 V\n", "\n", " value of inductor voltage at t = 6ms is 60.37 V\n", "\n", " the time after connection when the current is 15 V is 0.01145 sec" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 909

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine\n", "#(a) the time for the current in the 2 H inductor to fall to 200 mA,\n", "#and (b) the maximum voltage appearing across the resistor.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "i = 5;# in Amperes\n", "L = 2# in Henry\n", "i1 = 0.2;# in Amperes\n", "R = 10;# in Ohm\n", "\n", " #calculation:\n", " #time t\n", "ti = (-1*L/R)*math.log(i1/i)\n", " #voltage across the resistor is a maximum \n", "VRm = i*R\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n time t for the current in the 2 H inductor to fall to 200 mA is \",round(ti,3),\" sec\"\n", "print \"\\n max voltage across the resistor is \",VRm,\" V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " time t for the current in the 2 H inductor to fall to 200 mA is 0.644 sec\n", "\n", " max voltage across the resistor is 50 V" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 911

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#(a) Determine whether the circuit is over, critical or underdamped. (b) If C D 5 nF, determine the state of damping.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "L = 0.002# in Henry\n", "R = 1000;# in Ohm\n", "C1 = 5E-6;# in farad\n", "C2 = 5E-9;# in farad\n", "\n", " #calculation:\n", "a = (R/(2*L))**2\n", "b = 1/(L*C1)\n", "if (a>b):\n", "\ts1 = \"overdamped\";\n", "elif (ac):\n", "\ts2 = \"overdamped\";\n", "elif (aExample 6, page no. 912" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#what value of capacitance will give critical damping ?\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "L = 0.002# in Henry\n", "R = 1000;# in Ohm\n", "\n", " #calculation:\n", "a = (R/(2*L))**2\n", " #for critically damped\n", "C = 4*L/R**2\n", "\t\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n capacitance C is \",C*1E9,\"nF\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " capacitance C is 8.0 nF" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 913

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the nature of the response and obtain an expression for the current in the coil.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "L = 1.5# in Henry\n", "R = 90;# in Ohm\n", "C = 5*1E-6; # in Farad\n", "V = 10; # in Volts\n", "\n", "#calculation:\n", "a = -1*R/(2*L)\n", "b = (1/(L*C) - (R/(2*L))**2)**0.5\n", "V0 = V\n", "I0 = 0\n", "A = V0\n", "B = (I0 - C*a*V0)/(C*b)\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"Current, i = e^(\",a,\"t) (\",round((a*C*B - A*C*b),4),\"sin(\",round(b,1),\"t) + (\",round((-1*a*C*A + B*C*C*b),0),\"cos(\",round(b,1),\"t) Amps.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "Current, i = e^( -30.0 t) ( -0.0183 sin( 363.9 t) + ( 0.0 cos( 363.9 t) Amps.\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }