{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 40: Field theory

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 725

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the capacitance per metre length of the system\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 2.8;\n", "l = 1;# in m\n", "\n", "#calculation: \n", " #From Figure 40.9\n", "m = 16;# number of parallel squares measured along each equipotential\n", "n = 6;# the number of series squares measured along each line of force\n", "C = e0*er*l*m/n\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n capacitance is \",round(C*1E12,2),\"pFarad.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " capacitance is 66.08 pFarad." ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 725

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine the capacitance of a 100 m length of the cable.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 3.4;\n", "l = 100;# in m\n", "\n", " #calculation: \n", " #From Figure 40.10\n", "m = 13;# number of parallel squares measured along each equipotential\n", "n = 4;# the number of series squares measured along each line of force\n", "C = e0*er*l*m/n\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n capacitance is \",round(C*1E9,2),\"nFarad.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " capacitance is 9.78 nFarad." ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 726

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the capacitance per metre length of the cable\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 2.7;\n", "ri = 0.0005;# in m\n", "ro = 0.006;# in m\n", "\n", " #calculation: \n", " #capacitance C\n", "C = 2*math.pi*e0*er/(math.log(ro/ri))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n capacitance is \",round(C*1E12,2),\"pFarad.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " capacitance is 60.42 pFarad." ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 727

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the internal diameter of the sheath.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C = 80E-12;# in Farads\n", "e0 = 8.85E-12; \n", "er = 3.5;\n", "d0 = 0.008;# in m\n", "\n", " #calculation: \n", " #internal diameter\n", "di = d0*(math.e**(2*math.pi*e0*er/C))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n internal diameter is \",round(di,2),\" m.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " internal diameter is 0.09 m." ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 728

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the capacitance per kilometre length of the cable, \n", "#(b) the dielectric stress at a radius of 30 mm, and\n", "#(c) the maximum and minimum values of dielectric stress.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 3.5;\n", "di = 0.08;# in m\n", "d0 = 0.032;# in m\n", "r = 0.03;# in m\n", "V = 40000;# in Volts\n", "\n", "#calculation: \n", " #capacitance C\n", "C = 2*math.pi*e0*er/(math.log(di/d0))\n", " #dielectric stress at radius r,\n", "E = V/(r*math.log(di/d0))\n", " #maximum dielectric stress,\n", "Emax = V/((d0/2)*(math.log((di/d0))))\n", " #minimum dielectric stress,\n", "Emin = V/((di/2)*(math.log((di/d0))))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n capacitance is \",round(C*1E12,2),\"pF/km\"\n", "print \"\\n dielectric stress at radius r is \",round(E,2),\"V/m\"\n", "print \"\\n maximum dielectric stress, is \",round(Emax,2),\"V/m minimum dielectric stress \",round( Emin,2),\"V/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " capacitance is 212.4 pF/km\n", "\n", " dielectric stress at radius r is 1455142.22 V/m\n", "\n", " maximum dielectric stress, is 2728391.67 V/m minimum dielectric stress 1091356.67 V/m" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 729

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate (a) the core and inner sheath radii for the most economical cable,\n", "#(b) the capacitance per metre length, and (c) the charging current per kilometre run.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 3.5;\n", "V = 60000;# in Volts\n", "f = 50;# in Hz\n", "Em = 10E6;# in V/m\n", "\n", "\n", "#calculation: \n", " #core radius, a\n", "a = V/Em\n", " #internal sheath radius,\n", "b = a*math.e**1\n", " #capacitance\n", "C = 2*math.pi*e0*er/(math.log(b/a))\n", " #Charging current\n", "I = V*2*math.pi*f*C\n", " #charging current per kilometre\n", "Ipkm = I*1000\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n core radius is \",round(a*1000,2),\"mm and internal sheath radius \",round(b*1000,1),\"mm\"\n", "print \"\\n capacitance is \",round(C*1E12,0),\"pF/m\"\n", "print \"\\n the charging current per kilometre \",round(Ipkm,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " core radius is 6.0 mm and internal sheath radius 16.3 mm\n", "\n", " capacitance is 195.0 pF/m\n", "\n", " the charging current per kilometre 3.67 A" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 730

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine for a 1 km length of the cable (a) the capacitance, (b) the charging current and (c) the power loss.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 2.5;\n", "di = 0.08;# in m\n", "d0 = 0.025;# in m\n", "r = 1000;# in m\n", "V = 132000;# in Volts\n", "f = 50;# in Hz\n", "de = 3.5E-3;# rad.\n", "\n", " #calculation:\n", " #core radius, a\n", "a = d0/2\n", " #internal sheath radius,\n", "b = di/2\n", " #capacitance\n", "C = 2*math.pi*e0*er*1E3/(math.log(b/a))\n", " #Charging current\n", "I = V*2*math.pi*f*C\n", " #power loss\n", "P = (2*math.pi*f*C*math.tan(de))*V**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)capacitance for a 1 km length is \",round(C*1E6,2),\"uF\"\n", "print \"\\n (b)the charging current \",round(I,2),\"A/km\"\n", "print \"\\n (c)power loss \",round(P,2),\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)capacitance for a 1 km length is 0.12 uF\n", "\n", " (b)the charging current 4.96 A/km\n", "\n", " (c)power loss 2289.78 W" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8, page no. 732

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine the capacitance of the cable per metre length by the method of curvilinear squares\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 3.2;\n", "di = 0.06;# in m\n", "d0 = 0.020;# in m\n", "\n", " #calculation:\n", " #core radius, a\n", "a = d0/2\n", " #internal sheath radius,\n", "b = di/2\n", " #capacitance\n", "C = 2*math.pi*e0*er/(math.log(b/a))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n capacitance per m of length is \",round(C*1E9,2),\"nF\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " capacitance per m of length is 0.16 nF" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 9, page no. 736

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the capacitance of the line if the total length is 200 m.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 1;\n", "D = 0.05;# in m\n", "d = 0.005;# in m\n", "l = 200;# in m\n", "\n", " #calculation:\n", " #capacitance\n", "C = math.pi*e0*er/(math.log(D/(d/2)))\n", " #capacitance of a 200 m length\n", "C200 = C*l\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n capacitance of a 200 m length is \",round(C200*1E6,5),\"uF\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " capacitance of a 200 m length is 0.00186 uF" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 10, page no. 736

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine, for a 1 km length of line, (a) the capacitance of the conductors, \n", "#(b) the value of charge carried by each conductor, and (c) the charging current\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 1;\n", "D = 1.2;# in m\n", "r = 0.004;# in m\n", "f = 50;# in Hz\n", "V = 15000;# in Volts\n", "l = 1000;# in m\n", "\n", " #calculation:\n", " #capacitance\n", "C = math.pi*e0*er/(math.log(D/r))\n", " #capacitance of a 1 km length\n", "Cpkm = C*l\n", " #Charge Q\n", "Q = Cpkm*V\n", " #Charging current\n", "I = V*2*math.pi*f*Cpkm\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n capacitance per 1km length is \",round(Cpkm*1E9,2),\"nF\"\n", "print \"\\n Charge Q is \",round(Q*1E6,2),\"uC\"\n", "print \"\\n Charging current is \",round(I,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " capacitance per 1km length is 4.87 nF\n", "\n", " Charge Q is 73.12 uC\n", "\n", " Charging current is 0.02 A" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 11, page no. 737

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine (a) the maximum value required for the capacitance per metre length,\n", "#and (b) the maximum diameter of each conductor if their distance between centres is 1.25 m.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 1;\n", "I = 0.015;# in Amperes\n", "d = 1.25;# in m\n", "r = 800;# in m\n", "f = 50;# in Hz\n", "V = 10000;# in Volts\n", "\n", " #calculation:\n", " #capacitance\n", "C = I/(2*math.pi*f*V)\n", " #required maximum value of capacitance\n", "Cmax = C/r\n", " #maximum diameter of each conductor\n", "D = 2*d/(math.e**(math.pi*e0*er/Cmax))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n required maximum value of capacitance is \",round(Cmax*1E12,2),\"pF/m\"\n", "print \"\\nthe maximum diameter of each conductor is \",round(D,2),\" m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " required maximum value of capacitance is 5.97 pF/m\n", "\n", "the maximum diameter of each conductor is 0.02 m" ] } ], "prompt_number": 11 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 12, page no. 739

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the energy stored in a 10 nF capacitor when charged to 1 kV, and \n", "#the average power developed if this energy is dissipated in 10 \u03bcs\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 1;\n", "C = 10E-9;# in Farad\n", "V = 1000;# in Volts\n", "t = 10E-6;# in sec\n", "\n", " #calculation:\n", " #energy stored,Wf\n", "Wf = C*V*V/2\n", " #average power developed\n", "Pav = Wf/t\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the energy stored is \",Wf,\"J\"\n", "print \"\\nthe average power developed is \",Pav,\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the energy stored is 0.005 J\n", "\n", "the average power developed is 500.0 W" ] } ], "prompt_number": 12 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 13, page no. 739

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine (a) the voltage across the plates and (b) the capacitance of the capacitor.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 1;\n", "Q = 5E-3;# in Coulomb\n", "W = 0.625;# in Joules\n", "\n", " #calculation:\n", " #voltage across the plates\n", "V = 2*W/Q\n", " #Capacitance C\n", "C = Q/V\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n voltage across the plates is \",V,\" V\"\n", "print \"\\n Capacitance C is \",C*1E6,\"uF\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " voltage across the plates is 250.0 V\n", "\n", " Capacitance C is 20.0 uF" ] } ], "prompt_number": 13 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 14, page no. 740

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine (a) the required thickness of the ceramic dielectric, \n", "#(b) the area of plate required if the relative permittivity of the ceramic is 10, and \n", "#(c) the maximum energy stored by the capacitor.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 10;\n", "C = 0.01E-6;# in Farad\n", "E = 10E6;# in V/m\n", "V = 2500;# in Volts\n", "\n", " #calculation:\n", " #thickness of ceramic dielectric,\n", "d = V/E\n", " #cross-sectional area of plate\n", "A = C*d/(e0*er)\n", " #Maximum energy stored,\n", "W = C*V*V/2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n thickness of ceramic dielectric is \",d*1000,\"mm\"\n", "print \"\\n cross-sectional area of plate, is \",round(A,2),\"m2\"\n", "print \"\\n Maximum energy stored is \",round(W,3),\" J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " thickness of ceramic dielectric is 0.25 mm\n", "\n", " cross-sectional area of plate, is 0.03 m2\n", "\n", " Maximum energy stored is 0.031 J" ] } ], "prompt_number": 14 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 15, page no. 740

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the energy stored per cubic metre of the dielectric.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "e0 = 8.85E-12; \n", "er = 2.3;\n", "A = 0.02;# in m2\n", "C = 400E-12;# in Farad\n", "V = 100;# in Volts\n", "\n", " #calculation:\n", " #energy stored per unit volume of dielectric,\n", "W = ((C*V)**2)/(2*e0*er*A**2)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n energy stored per unit volume of dielectric is \",round(W,2),\" J/m3\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " energy stored per unit volume of dielectric is 0.1 J/m3" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 16, page no. 744

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the inductance of the cable per metre length.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "u0 = 4*math.pi*1E-7; \n", "ur = 1;\n", "a = 0.001;# in m\n", "b = 0.004;# in m\n", "\n", " #calculation:\n", " #inductance L\n", "L = (u0*ur/(2*math.pi))*(0.25 + math.log(b/a))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n inductance L is \",round(L*1E6,2),\"uH/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " inductance L is 0.33 uH/m" ] } ], "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 17, page no. 744

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine the diameter of the sheath.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "u0 = 4*math.pi*1E-7; \n", "ur = 1;\n", "da = 0.010;# in m\n", "L = 4E-7;# in H/m\n", "\n", " #calculation:\n", " #diameter of the sheath\n", "db = da*(math.e**(L/(u0*ur/(2*math.pi))))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n diameter of the sheath is \",round(db,2),\" m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " diameter of the sheath is 0.07 m" ] } ], "prompt_number": 17 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 18, page no. 745

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine for the cable (a) the inductance, assuming nonmagnetic materials, and \n", "#(b) the capacitance, assuming a dielectric of relative permittivity 3.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "u0 = 4*math.pi*1E-7; \n", "ur = 1;\n", "e0 = 8.85E-12;\n", "er = 3;\n", "da = 0.010;# in m\n", "db = 0.025;# in m\n", "l = 7500;# in m\n", "\n", "#calculation:\n", " #inductance per metre length\n", "L = (u0*ur/(2*math.pi))*(0.25 + math.log(db/da))\n", " #Since the cable is 7500 m long,\n", "L7500 = L*7500\n", " #capacitance C\n", "C = 2*math.pi*e0*er/(math.log(db/da))\n", " #//Since the cable is 7500 m long,\n", "C7500 = C*7500\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\ninductance is \",round(L7500*1000,2),\" mH\"\n", "print \"\\ncapCItance is \",round(C7500*1E6,2),\"uF\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", "inductance is 1.75 mH\n", "\n", "capCItance is 1.37 uF" ] } ], "prompt_number": 18 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 19, page no. 748

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the inductance of the line per metre length ignoring internal linkages\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "u0 = 4*math.pi*1E-7; \n", "ur = 1;\n", "e0 = 8.85E-12;\n", "er = 3;\n", "D = 1.2;# in m\n", "a = 0.008;# in m\n", "\n", " #calculation:\n", " #inductance per metre length\n", "L = (u0*ur/(math.pi))*(math.log(D/a))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\ninductance is \",round(L*1E6,2),\"uH/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", "inductance is 2.0 uH/m" ] } ], "prompt_number": 19 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 20, page no. 748

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the loop inductance, and \n", "#(b) the capacitance of a 1 km length of single-phase twin line having conductors of diameter 10 mm and spaced 800 mm apart in air.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "u0 = 4*math.pi*1E-7; \n", "ur = 1;\n", "e0 = 8.85E-12;\n", "er = 1;\n", "l = 1000;# in m\n", "D = 0.8;# in m\n", "a = 0.01/2;# in m\n", "\n", " #calculation:\n", " #inductance per metre length\n", "L = (u0*ur/(math.pi))*(0.25 + math.log(D/a))\n", " #Since the cable is 1000 m long,\n", "L1k = L*l\n", " #capacitance C\n", "C = math.pi*e0*er/(math.log(D/a))\n", " #//Since the cable is 1000 m long,\n", "C1k = C*l\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\ninductance is \",round(L1k*1000,2),\" mH\"\n", "print \"\\ncapcitance is \",round(C1k*1E9,2),\"nF\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", "inductance is 2.13 mH\n", "\n", "capcitance is 5.48 nF\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 21, page no. 749

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the distance between their centres.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "L = 2.185E-6;# in H/m\n", "u0 = 4*math.pi*1E-7; \n", "ur = 1;\n", "a = 0.012/2;# in m\n", "\n", " #calculation:\n", " #distance D\n", "D = a*math.e**((L*math.pi)/(u0*ur) - 0.25)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\ndistance D is \",round(D,2),\" m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", "distance D is 1.1 m" ] } ], "prompt_number": 21 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 22, page no. 752

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#What value of current would double the energy stored?\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "L = 0.2;# in H\n", "I = 0.05;# in Amperes\n", "u0 = 4*math.pi*1E-7; \n", "ur = 1;\n", "\n", "#calculation:\n", " #energy stored in inductor\n", "W = L*I*I/2\n", " #current I\n", "I = (2*2*W/L)**0.5\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\nenergy stored in inductor is \",round(W*1000,2),\"mJ\"\n", "print \"\\ncurrent I is \",round(I,2),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", "energy stored in inductor is 0.25 mJ\n", "\n", "current I is 0.07 A" ] } ], "prompt_number": 22 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 23, page no. 752

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine the total energy stored in the magnetic field of the airgap.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "B = 0.05;# in Tesla\n", "A = 500E-6;# in m2\n", "l = 0.002;# in m\n", "u0 = 4*math.pi*1E-7; \n", "\n", "#calculation:\n", " #energy stored\n", "W = (B**2)/(2*u0)\n", " #Volume of airgap\n", "v = A*l\n", " #energy stored in airgap\n", "W = W*v\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\nenergy stored in the airgap is \",round(W*1E6,2),\"uJ\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", "energy stored in the airgap is 994.72 uJ" ] } ], "prompt_number": 23 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 24, page no. 752

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the strength of a uniform electric fi\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "B = 0.8;# in Tesla\n", "A = 500E-6;# in m2\n", "l = 0.002;# in m\n", "u0 = 4*math.pi*1E-7; \n", "ur = 1;\n", "e0 = 8.85E-12;\n", "er = 1;\n", "\n", "#calculation:\n", " #energy stored in mag. field\n", "W = (B**2)/(2*u0)\n", " #electric field\n", "E = (2*W/(e0*er))**0.5\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\nelectric field strength is \",round(E/1E6,2),\"MV/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", "electric field strength is 239.89 MV/m" ] } ], "prompt_number": 24 } ], "metadata": {} } ] }