{
 "metadata": {
  "name": "",
  "signature": "sha256:7389552750eb30891c831f10215e616f84c75b4bc1c44e309d45236439691034"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 38: Magnetic materials</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 1, page no. 694</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "A  =  12.5;#  in  cm2\n",
      "x  =  500;#  horizontal  axis  1  cm  =  500  A/m\n",
      "y  =  0.2;#  vertical  axis  1  cm  =  0.2  T\n",
      "f  =  50;#  in  Hz\n",
      "\n",
      " #calculation:  \n",
      " #hysteresis  loss  per  cycle\n",
      "HL  =  A*x*y\n",
      " #At  50  Hz  frequency,  hysteresis  loss\n",
      "HLf  =  HL*f\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)hysteresis  loss  per  cycle  is  =  \",HL,\"  J/m3\"\n",
      "print  \"\\n(b)At  50  Hz  frequency,  hysteresis  loss  \",HLf,\"  W/m3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)hysteresis  loss  per  cycle  is  =   1250.0   J/m3\n",
        "\n",
        "(b)At  50  Hz  frequency,  hysteresis  loss   62500.0   W/m3"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 695</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "n  =  1.6;#  the  Steinmetz  index\n",
      "f1  =  50;#  in  Hz\n",
      "f2  =  25;#  in  Hz\n",
      "Bm1  =  1.5;#  in  Tesla\n",
      "Bm2  =  1.1;#  in  Tesla\n",
      "Ph1  =  62500;#  in  W/m3\n",
      "v  =  1;\n",
      "\n",
      "#calculation:  \n",
      " #hysteresis  loss  Ph  =  kh*v*f*(Bm)**n\n",
      "kh  =  Ph1/(v*f1*(Bm1)**n)\n",
      " #When  f  =  25  Hz  and  Bm  =  1.1  T,\n",
      "Ph2  =  kh*v*f2*(Bm2)**n\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  hysteresis  loss  When  f  =  25  Hz  and  Bm  =  1.1  T,  is  =  \",round(Ph2,2),\"  W/m3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  hysteresis  loss  When  f  =  25  Hz  and  Bm  =  1.1  T,  is  =   19025.33   W/m3"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 695</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "csa  =  0.002;#  in  m2\n",
      "l  =  1;#  in  m\n",
      "a  =  400/0.01;#  10  mm  =  400  A/m  \n",
      "b  =  0.1/0.01;#  10  mm  =  0.1  T  \n",
      "A  =  0.01;#  in  m2\n",
      "f  =  80;#  in  Hz\n",
      "\n",
      "#calculation:  \n",
      " #hysteresis  loss  per  cycle\n",
      "HL  =  A*a*b\n",
      " #At  a  frequency  of  80  Hz,\n",
      " #hysteresis  loss\n",
      "HLf  =  HL*f\n",
      " #Volume  of  ring\n",
      "v  =  csa*l\n",
      " #hysteresis  loss\n",
      "Ph  =  HLf*v\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  the  hysteresis  loss  at  a  frequency  of  80  Hz  is  \",Ph,\"  W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  the  hysteresis  loss  at  a  frequency  of  80  Hz  is   640.0   W"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 4, page no. 696</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "Phi1  =  0.01;#  in  Wb\n",
      "Phi2  =  0.008;#  in  Wb\n",
      "csa  =  0.008;#  in  m2\n",
      "v  =  0.005;#  in  m3\n",
      "f  =  50;#  in  Hz\n",
      "n  =  1.7;#  the  Steinmetz  constant\n",
      "Ph1  =  100;#  in  Watt\n",
      "\n",
      " #calculation:  \n",
      " #maximum  flux  density\n",
      "Bm1  =  Phi1/csa\n",
      " #hysteresis  loss  Ph1  =  kh*v*f*(Bm1)**n\n",
      "kh  =  Ph1/(v*f*(Bm1)**n)\n",
      " #When  the  maximum  core  flux  is  8  mWb,\n",
      "Bm2  =  Phi2/csa\n",
      " #hysteresis  loss,  Ph2\n",
      "Ph2  =  kh*v*f*(Bm2)**n\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"value  of hysteresis  loss  when  maximum  core  flux  is  8  mWb  and  the  frequency  is  50  Hz  is  \",round(Ph2,2),\"  W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "value  of hysteresis  loss  when  maximum  core  flux  is  8  mWb  and  the  frequency  is  50  Hz  is   68.43   W\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 5, page no. 699</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "Pe1  =  10;#  in  W/m3\n",
      "f1  =  50;#  in  Hz\n",
      "f2  =  30;#  in  Hz\n",
      "\n",
      " #calculation:  \n",
      " #When  the  eddy  current  loss  is  10  W/m3,  frequency  f  is  50  Hz.\n",
      " #constant  k\n",
      "k  =  Pe1/(f1**2)\n",
      " #When  the  frequency  is  30  Hz,  eddy  current  loss,\n",
      "Pe2  =  k*(f2**2)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\neddy  current  loss  per  cubic  metre  is  \",Pe2,\"  W/m3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "eddy  current  loss  per  cubic  metre  is   3.6   W/m3"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 6, page no. 699</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "Pe  =  100;#  in  W/m3\n",
      "f1  =  50;#  in  Hz\n",
      "t1  =  0.0005;#  in  m\n",
      "x  =  1/3;\n",
      "f2  =  250;#  in  Hz\n",
      "Bm1 = 1;\n",
      " #calculation:  \n",
      " #Pe  =  ke*(Bm1*f1*t1)**2\n",
      " #Hence,  at  50  Hz  frequency\n",
      "ke  =  Pe/(Bm1*f1*t1)**2\n",
      " #At  250  Hz  frequency\n",
      "Bm2  =  x*Bm1\n",
      "t2  =  ((Pe/ke)**0.5)/(Bm2*f2)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\nlamination  thickness  is  \",t2,\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "lamination  thickness  is   0.0003 m"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 7, page no. 700</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "Ph1  =  40;#  in  W\n",
      "Pe1  =  20;#  in  W\n",
      "f1  =  50;#  in  Hz\n",
      "x  =  1/2;\n",
      "f2  =  60;#  in  Hz\n",
      "t1  =  1;\n",
      " #calculation:  \n",
      " #hysteresis  loss  Ph  =  kh*v*f*(Bm)**n  =  k1*f\n",
      " #Thus  when  the  hysteresis  is  40  W  and  the  frequency  50  Hz,\n",
      "k1  =  Ph1/f1\n",
      " #If  the  frequency  is  increased  to  60  Hz,\n",
      "Ph2  =  k1*f2\n",
      " #eddy  current  loss,  Pe  =  ke*(Bm1*f1*t1)**2  =  k2*f**2\n",
      " #since  the  flux  density  and  lamination  thickness  are  constant.\n",
      " #When  the  eddy  current  loss  is  20  W  the  frequency  is  50  Hz.  Thus\n",
      "k2  =  Pe1/(f1**2)\n",
      " #If  the  frequency  is  increased  to  60  Hz,\n",
      "Pe2  =  k2*(f2**2)\n",
      " #hysteresis  loss  Ph  =  kh*v*f*(Bm)**n,  is  independent  of  the  thickness  of  the  laminations.  \n",
      "    #Thus,  if  the  thickness  of  the  laminations  is  halved,  the  hysteresis  loss  remains  at  \n",
      "Phb2  =  Ph1\n",
      " #eddy  current  loss,  Pe  =  ke*(Bm1*f1*t1)**2  =  k2*t**3\n",
      "k3  =  Pe1/(t1**3)\n",
      "t2  =  0.5*t1\n",
      "Peb2  =  k3*t2**3\n",
      " #total  core  loss  when  the  thickness  of  the  laminations  is  halved  is  given  by\n",
      "TL  =  Phb2  +  Peb2\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)If  the  frequency  is  increased  to  60  Hz,hysteresis  loss  is  \",Ph2,\"  W  and  eddy  current  loss  \",  Pe2,\"  W\"\n",
      "print  \"\\n(b)the  total  core  loss  when  the  thickness  of  the  laminations  is  halved  \",TL,\"  W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)If  the  frequency  is  increased  to  60  Hz,hysteresis  loss  is   48.0   W  and  eddy  current  loss   28.8   W\n",
        "\n",
        "(b)the  total  core  loss  when  the  thickness  of  the  laminations  is  halved   42.5   W\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 8, page no. 701</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "V1  =  500;#  in  Volts\n",
      "V2  =  1000;#  in  Volts\n",
      "Ph1  =  400;#  in  W\n",
      "Pe1  =  150;#  in  W\n",
      "f1  =  50;#  in  Hz\n",
      "n  =  1.6;#  Steinmetz  index\n",
      "f2  =  100;#  in  Hz\n",
      "\n",
      " #calculation:  \n",
      " #hysteresis  loss  Ph  =  k1*f*(E/f)**n\n",
      " #At  500  V  and  50  Hz\n",
      "k1  =  Ph1/(f1*(V1/f1)**1.6)\n",
      " #At  1000  V  and  100  Hz,\n",
      "Ph2  =  k1*f2*(V2/f2)**1.6\n",
      " #eddy  current  loss,  Pe  =  k2*E**2\n",
      " #At  500  V,\n",
      "k2  =  Pe1/(V1**2)\n",
      " #At  1000  V,\n",
      "Pe2  =  k2*(V2**2)\n",
      " #the  new  total  core  loss\n",
      "TL  =  Ph2  +  Pe2\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  the  new  total  core  loss  \",TL,\"  W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  the  new  total  core  loss   1400.0   W"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 9, page no. 702</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#from pylab import *\n",
      "%matplotlib inline\n",
      "#initializing  the  variables:\n",
      "f1  =  50;#  in  Hz\n",
      "f2  =  60;#  in  Hz\n",
      "\n",
      "#calculation:\n",
      "k1  =  0.5\n",
      "k2  =  0.032\n",
      "f = [30, 50, 70,90]\n",
      "Pcf = [1.5, 2.1, 2.7, 3.4]\n",
      "fig  = plt.figure()\n",
      "ax = fig.add_subplot(1, 1, 1)\n",
      "ax.plot(f,Pcf,'-')\n",
      "xlabel('f')\n",
      "ylabel('Pc/f')\n",
      "show()\n",
      "HL1 = k1*f1\n",
      "ECL1 = k2*f1**2\n",
      "\n",
      "HL2 = k1*f2\n",
      "ECL2 = k2*f2**2\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a) at Frequency = 50 Hz, hysteresis loss is\", HL1,\" W and eddy current loss is\", ECL1,\" W\"\n",
      "print  \"\\n  (b) at Frequency = 60 Hz, hysteresis loss is\", HL2,\" W and eddy current loss is\", ECL2,\" W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
        "For more information, type 'help(pylab)'."
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEKCAYAAADw2zkCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF3FJREFUeJzt3XtwVPX5x/HPAplAkCIINcwY7pRy2+wSSOhUNFCLGgyp\nBQczFiimM9RiCyIOg6UjTBmodiAwtsZLocOIyDjQsRAQKMhmLJeN4RKQi1yUIVigBAskciff3x+R\n/Ii57S57ds+efb9mdoZkzx6/X2H2yfM5z564jDFGAIC41izaCwAARB/FAABAMQAAUAwAAKIYAABE\nMQAAyKJicPXqVWVkZMjj8WjIkCHKz8+vc4zP51Pbtm3l9Xrl9Xo1d+5cK5YCAAhACytO2rJlS23d\nulVJSUm6du2a0tLSlJ2drZ49e9Y67uGHH9aaNWusWAIAIAiWxURJSUmSpMrKSt28eVOJiYl1juHz\nbgBgD5YVg6qqKqWmpur+++/X888/r5SUlFrPu1wubd++XR6PR9OmTdPx48etWgoAoCnGYl9++aXp\n06eP2b17d63vX7p0yXzzzTfm+vXr5p133jEjR46s9/WSePDgwYNHCI9gWD5N1LVrV2VlZcnv99f6\nfps2bZSUlKSEhATl5eXp008/1bVr1+o9hzHGsY9XXnkl6mtgb+yP/TnvESxLikF5ebkuXLggSTp/\n/rw2bdqknJycWsecPXu2ZsFr166V2+2u97oCAMB6lkwTnT59WhMmTNCtW7eUnJys6dOnq1OnTnrr\nrbckSZMmTdKqVatUUFCgFi1ayO12a8GCBVYsBQAQAJcJpZ+IIJfLFVLLEyt8Pp8yMzOjvQxLOHlv\nEvuLdU7fX7DvnRQDAHCgYN87uR0FAIBiAACgGAAARDEAAIhiAACOsn+/9MQTwb+OYgAADlBVJS1c\nKA0fLo0eHfzrGS0FgBhXVib98pfS1avSu+9K3bszWgoAcWXlSiktrbojKCqqLgShsOR2FAAAa124\nIE2eLO3aJa1fLw0adHfnozMAgBizdauUmiq1ayft3n33hUCiMwCAmHHtmvT730vvvy/97W/S44+H\n79wUAwCIAfv3S888I/XsKZWWSh06hPf8xEQAYGN3joy+8IK0enX4C4FEZwAAtnXnyKjfH/qkUCDo\nDADAhsI1MhooOgMAsJFwj4wGis4AAGzCipHRQNEZAECUWTkyGiiKAQBE0f790i9+IfXoYc3IaKCI\niQAgCu4cGZ061bqR0UDRGQBAhEVyZDRQdAYAEEGRHhkNFJ0BAERAtEZGA0VnAAAWi+bIaKDoDADA\nInYYGQ0UxQAALGCXkdFAERMBQBjZbWQ0UHQGABAmdhwZDRSdAQCEgV1HRgNFZwAAd8HuI6OBojMA\ngBDFwshooOgMACBI165Js2ZJK1bYf2Q0UBQDAAhCrI2MBoqYCAACEKsjo4GiMwCAJsTyyGig6AwA\noBGxPjIaKDoDAKiHU0ZGA0VnAADf4aSR0UDRGQDAt5w4MhooigEAyLkjo4EiJgIQ15w+MhooOgMA\ncSseRkYDRWcAIC7Fy8hooOgMAMSVeBsZDRSdAYC4EY8jo4GiMwDgePE8MhooSzqDq1evKiMjQx6P\nR0OGDFF+fn69x82cOVPdu3dXWlqaDh8+bMVSAMS5/ful9HTp+PHqkVEKQf0sKQYtW7bU1q1btXfv\nXhUVFWnJkiU6duxYrWOKi4v1ySefqKSkRNOnT9f06dOtWAqAOMXIaHAsu2aQlJQkSaqsrNTNmzeV\nmJhY63m/368xY8aoffv2ys3N1aFDh6xaCoA4U1Ym/fSn1QXA75cmTpRcrmivyt4su2ZQVVUlr9er\nAwcOaNGiRUpJSan1fHFxscaNG1fzdceOHXX8+HH16NGjzrlmz55d8+fMzExlZmZatWwAMW7lSul3\nv5OmTJFmzJBaxMmVUZ/PJ5/PF/LrLfvf1KxZM5WWlurEiRPKysrSj3/8Y3m93prnjTEyxtR6jauB\n0n1nMQCA+sT7yOh3f1CeM2dOUK+3fLS0a9euysrKkt/vr/X9jIwMHTx4sObrc+fOqXu8f+oDQEgY\nGb17lhSD8vJyXbhwQZJ0/vx5bdq0STk5ObWOycjI0OrVq3X+/HmtWLFCffr0sWIpABzs2jXppZeq\nbzD35pvSX/4ifXu5EkGyJCY6ffq0JkyYoFu3bik5OVnTp09Xp06d9NZbb0mSJk2apPT0dD344IMa\nNGiQ2rdvr+XLl1uxFAAOFe93GQ03l/lucG8zLperzrUFAPGrqkpatEiaP1967bXqG80xKVRXsO+d\ncXKdHYATcJdR63BvIgAxgbuMWovOAICtxfvIaKTQGQCwLUZGI4fOAIDtcJfRyKMYALAVRkajg5gI\ngC1wl9HoojMAEHWMjEYfnQGAqGJk1B7oDABEBSOj9kJnACDiGBm1HzoDABHDyKh9UQwARAQjo/ZG\nTATAUoyMxgY6AwCWYWQ0dtAZALAEI6Oxhc4AQFgxMhqb6AwAhA0jo7GLzgDAXWNkNPZRDADcFUZG\nnYGYCEBIGBl1FjoDAEE7dUqaMIGRUSehMwAQlJUrpYEDGRl1GjoDAAFhZNTZ6AwANImRUeejMwDQ\nIEZG4wfFAEC9GBmNL8REAGq5fl167TVGRuMNnQGAGh9/LD3/vNS1KyOj8YZiAEBffSW9+KK0c6e0\naJGUkyO5XNFeFSKJmAiIY9evS3/+c/WkUK9e0sGD0s9+RiGIR3QGQJy6MxLasaO6GCB+UQyAOEMk\nhPoQEwFxgkgIjaEzAOIAkRCaQjEAHIxICIEiJgIciEgIwaIzAByGSAihoBgADkEkhLtBTATEOCIh\nhAOdARDDiIQQLhQDIAYRCSHcGoyJZsyYIUn64IMPIrYYAI0jEoJVGiwGW7Zs0Y0bNzR//vxIrgdA\nAz7+WPJ4qn8F5Y4d0h//KCUlRXtVcIoGY6Knn35anTt31rlz59SmTZtaz7lcLl26dMnyxQEgEkJk\nuIwxprEDRo0apTVr1kRqPXW4XC41sUTAka5flxYvll59VXruOWnmTDoBBC7Y984GY6JHH31U+fn5\nevXVV4NeRFlZmYYNG6Z+/fopMzNTK1asqHOMz+dT27Zt5fV65fV6NXfu3KD/O4BTEQkh0hrsDE6f\nPq0NGzZo48aN+vzzz5WRkaHHH39cjzzyiFq3bt3oSc+cOaMzZ87I4/GovLxc6enpKi0trRU3+Xw+\nLVy4sMmug84A8YRICOESts6gU6dOmjhxolauXKmSkhKNHz9eJSUlGjFihH7yk5/otddea/CkycnJ\n8ng8kqQOHTqoX79+KikpqXMcb/JANaaEEG1NXjOoz7lz57Rp0yY988wzTR577NgxjRgxQvv376/V\nURQVFennP/+5UlJSNHz4cE2ePFk9evSou0A6Azjcli3VHxzr1q36GgEfHEM4BPve2eSHzsaPH6/F\nixerXbt2kqT//e9/mjFjhpYuXdrkySsqKjR27Fjl5+fXiZYGDhyosrIyJSQkaNmyZZoyZYoKCwvr\nPc/s2bNr/pyZmanMzMwm/9uA3REJIZx8Pp98Pl/Ir2+yM/B4PNq7d2+t76Wmpqq0tLTRE9+4cUMj\nR45UVlaWpk6d2uixxhglJyfr5MmTSkxMrL1AOgM4DFNCiISwXTO4rUuXLjp69GjN10eOHNEDDzzQ\n6GuMMcrLy1P//v0bLARnz56tWejatWvldrvrFALAabZsqb4uwJQQ7KbJmOg3v/lNzRSRMUabN29W\nQUFBo6/Ztm2bli9fLrfbLa/XK0maN2+eTp48KUmaNGmSVq1apYKCArVo0UJut1sLFiwIw3YAeyIS\ngt0FdAH58uXLWrdunSRp5MiRSorgjzLERIhlREKIlrBdQL5x44Y2btyof//733r00Uc1evRoNWvG\nrz8AAnXnlBC3l4bdNdgZvPTSSzp48KCGDx+uwsJCZWdna9q0aZFeH50BYg6REOwg2PfOBotBWlqa\ndu7cqYSEBF24cEE5OTkqKioK20IDRTFArCASgp2ELSaqqqpSQkKCJOnee+/lLqVAI4iEEOsa7Aya\nN29e60LxlStX1KpVq+oXRfAW1nQGsDMiIdhV2DqDW7duhWVBgBN9NxJaupRICLGN34EMBIlICE5E\nMQACRCQEJ+ODA0ATuL004gGdAdAIIiHEC4oBUA8iIcQbYiLgDkRCiFd0BsC3iIQQzygGiHtEQgAx\nEeIYkRDw/+gMEJeIhIDaKAaIK0RCQP2IiRAXiISAxtEZwPGIhICmUQzgWKdOVUdCfj+RENAUYiI4\nzu1IyOORfvADIiEgEHQGcBQiISA0FAM4ApEQcHeIiRDTiISA8KAzQMwiEgLCh2KAmEMkBIQfMRFi\nBpEQYB06A8QEIiHAWhQD2BqREBAZxESwJSIhILLoDGA7REJA5FEMYBtEQkD0EBMh6oiEgOijM0BU\nEQkB9kAxQFQQCQH2QkyEiCISAuyJzgARQyQE2BfFAJYjEgLsj5gIliESAmIHnQEssWWL9NvfSl27\nEgkBsYBigLC6MxLKz6cTAGIFMRHCor5I6MknKQRArKAzwF1jSgiIfRQDhIwpIcA5iIkQNKaEAOeh\nM0BQiIQAZ6IYICBEQoCzWRITlZWVadiwYerXr58yMzO1YsWKeo+bOXOmunfvrrS0NB0+fNiKpeAu\nEQkB8cFljDHhPumZM2d05swZeTwelZeXKz09XaWlpWrTpk3NMcXFxZo2bZrWrFmjjRs36r333lNh\nYWHdBbpcsmCJCMCdkdDixURCQCwJ9r3Tks4gOTlZHo9HktShQwf169dPJSUltY7x+/0aM2aM2rdv\nr9zcXB06dMiKpSAEp05JY8dKeXnS/PnSunUUAsDpLJ8mOnbsmA4cOKD09PRa3y8uLlbfvn1rvu7Y\nsaOOHz9u9XLQCCIhIH5ZegG5oqJCY8eOVX5+vlq3bl3rOWNMnRbG1cC7zuzZs2v+nJmZqczMzHAv\nNe4xJQTENp/PJ5/PF/LrLblmIEk3btzQyJEjlZWVpalTp9Z5/vXXX9fNmzf1wgsvSJJ69OhRb2fA\nNQNrMSUEOJMtrhkYY5SXl6f+/fvXWwgkKSMjQ6tXr9b58+e1YsUK9enTx4qloAFEQgDuZElMtG3b\nNi1fvlxut1ter1eSNG/ePJ08eVKSNGnSJKWnp+vBBx/UoEGD1L59ey1fvtyKpaAeREIAvsuymChc\niInCh0gIiB+2iIlgL0RCAJrC7SgcjkgIQCAoBg5FJAQgGMREDkMkBCAUdAYOQiQEIFQUAwcgEgJw\nt4iJYhiREIBwoTOIUURCAMKJYhBjiIQAWIGYKEYQCQGwEp1BDCASAmA1ioGNEQkBiBRiIhsiEgIQ\naXQGNkMkBCAaKAY2QSQEIJqIiaKMSAiAHdAZRBGREAC7oBhEwVdfVUdCO3cSCQGwB2KiCLodCaWm\nVncBREIA7ILOIEKIhADYGcXAYkRCAGIBMZFFiIQAxBI6AwsQCQGINRSDMCISAhCriInCgEgIQKyj\nM7hLREIAnIBiECIiIQBOQkwUJCIhAE5EZxAEIiEATkUxCACREACnIyZqBJEQgHhBZ9AAIiEA8YRi\n8B1EQgDiETHRt4iEAMQzOgMRCQFAXBcDIiEAqBaXMRGREADUFnedAZEQANQVN8WASAgAGub4mIhI\nCACa5ujOgEgIAALjyGJAJAQAwXFUTEQkBAChcUxnQCQEAKGL+WJAJAQAdy9mYyIiIQAIn5jsDIiE\nACC8LOkMnn32Wd1///0aMGBAvc/7fD61bdtWXq9XXq9Xc+fODei8X30lPf20lJcnzZ8vrVsX+4XA\n5/NFewmWcfLeJPYX65y+v2BZUgwmTpyoDRs2NHrMww8/rD179mjPnj2aNWtWo8c6ORJy8j9IJ+9N\nYn+xzun7C5YlMdHQoUN14sSJRo8xxgR8vtRUIiEAsFJULiC7XC5t375dHo9H06ZN0/Hjxxs93imR\nEADYlcsE8yN6EE6cOKHs7Gzt37+/znMVFRVq3ry5EhIStGzZMn344YcqLCysf4FOyIIAIAqCeXuP\nSjG4kzFGycnJOnnypBITE61YCgCgCVGJic6ePVtTsdauXSu3200hAIAosuQCcm5uroqKilReXq6U\nlBTNmTNHN27ckCRNmjRJq1atUkFBgVq0aCG3260FCxZYsQwAQKCMTVy5csWkp6eb1NRUk5GRYRYu\nXGiMMebSpUtm1KhRJiUlxeTk5JiKiooorzR0N2/eNB6PxzzxxBPGGGftrUuXLmbAgAHG4/GYwYMH\nG2Octb/Kykozfvx406tXL9OnTx+zc+dOx+zv8OHDxuPx1Dy+973vmcWLF5uKigpH7M8YY95++23z\nox/9yAwcONBMmTLFGOOcf5/vvfeeeeihh0zfvn3NO++8Y4wJbW+2uR1Fy5YttXXrVu3du1dFRUVa\nsmSJjh49qoKCAnXu3FlHjx7VAw88oDfffDPaSw3Z4sWL1bdv35qL4k7am8vlks/n0549e1RcXCzJ\nWft75ZVX1LlzZ+3bt0/79u3TD3/4Q8fsr3fv3jWf+dm1a5eSkpL05JNP6o033nDE/r7++mvNmzdP\n//rXv/Tpp5/qyJEj2rhxoyP+/i5evKg5c+boww8/lN/v19tvv62LFy+GtDfbFANJSkpKkiRVVlbq\n5s2bSkxMVHFxsfLy8pSYmKhnn31Wfr8/yqsMzalTp7R+/Xr96le/qrle4pS93Wa+M4vgpP1t3rxZ\nL7/8slq2bKkWLVqobdu2jtrfbZs3b1bPnj2VkpLimP21atVKxhhdvHhRV65c0eXLl3Xvvfc6Yn/b\nt2/XwIED1a5dO91zzz0aNmyYduzYEdreLO1fgnTr1i3jdrtN8+bNzeuvv26MMaZz587mypUrxhhj\nvvnmG9O5c+doLjFkY8aMMbt37zY+n68mJnLK3owxplu3bsbtdpucnBzzz3/+0xjjnP2VlZWZ3r17\nmwkTJpj09HTzpz/9yVy+fNkx+7vTxIkTzV//+ldjjHP+/owxZv369SYhIcHcc8895uWXXzbGOGN/\nlZWVpnv37uaLL74w//nPf0z//v3NH/7wh5D2ZqvOoFmzZiotLdWxY8f0xhtvaM+ePUHNydpVYWGh\nvv/978vr9dbajxP2dtu2bdtUWlqq+fPna9q0aTpz5oxj9nf16lUdOXJEo0ePls/n04EDB/TBBx84\nZn+3Xb9+XWvXrtVTTz0lyTn/Ps+dO6fnnntOBw8e1IkTJ7Rjxw4VFhY6Yn+tW7fWokWLNHnyZI0Z\nM0YDBgxQYmJiSHuzVTG4rWvXrsrKypLf79fgwYN16NAhSdKhQ4c0ePDgKK8ueNu3b9eaNWvUrVs3\n5ebm6uOPP9a4ceMcsbfbOnXqJEnq06ePRo0apbVr1zpmfz179lTv3r2VnZ2tVq1aKTc3Vxs2bHDM\n/m776KOPlJaWpo4dO0qSY/ZXXFysIUOGqGfPnrrvvvv01FNP6ZNPPnHM/rKzs7V+/Xpt27ZNVVVV\neuyxx0Lam22KQXl5uS5cuCBJOn/+vDZt2qScnBxlZGRo6dKlunLlipYuXaohQ4ZEeaXBmzdvnsrK\nyvTll19q5cqVGj58uN59911H7E2SLl++rIqKCknVP4Vt3LhRjz32mGP2J0m9evWS3+9XVVWV1q1b\np0ceecRR+5Ok999/X7m5uTVfO2V/Q4cOVUlJib7++mtdu3ZNH330kUaMGOGY/f33v/+VVH2957PP\nPtPAgQND25tVWVaw9u3bZ7xer3G73WbEiBFm2bJlxhjnjH/d5vP5THZ2tjHGOXv74osvTGpqqklN\nTTXDhw83S5YsMcY4Z3/GGPP555+bjIwMk5qaal588UVTWVnpqP1VVlaa++67z1y6dKnme07a39//\n/nfz0EMPmUGDBplZs2aZW7duOWZ/Q4cONb179zaDBg0yfr/fGBPa351lt6MAAMQO28REAIDooRgA\nACgGAACKAQBAFAMgJMuXL1d6errGjRsX7aUAYcE0ERCCtLQ0/eMf/1CXLl2ivRQgLOgMgCD9+te/\n1meffabs7GwtWrQo2ssBwoLOAAhBt27dtGvXLrVv3z7aSwHCgs4AAEAxAABQDAAAohgAIbn9q0sB\np+ACMgCAzgAAQDEAAIhiAAAQxQAAIIoBAEAUAwCApP8Dct/cT2ymCSkAAAAASUVORK5CYII=\n"
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a) at Frequency = 50 Hz, hysteresis loss is 25.0  W and eddy current loss is 80.0  W\n",
        "\n",
        "  (b) at Frequency = 60 Hz, hysteresis loss is 30.0  W and eddy current loss is 115.2  W"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 10, page no. 703</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "TL1  =  400;#  in  Watt\n",
      "TL2  =  498;#  in  Watt\n",
      "x  =  0.25;\n",
      "y  =  0.4;\n",
      "f1  =  50;#  in  Hz\n",
      "n  =  1.7;#  Steinmetz  index\n",
      "f2  =  60;#  in  Hz\n",
      "\n",
      " #calculation:  \n",
      " #if  volume  v  and  the  maximum  flux  density  are  constant\n",
      " #hysteresis  loss  Ph  =  kh*v*f*(Bm)**n  =  k1*f\n",
      " #(if  the  maximum  flux  density  and  the  lamination  thickness  are  constant)\n",
      " #eddy  current  loss,  Pe  =  ke*(Bm1*f1*t1)**2  =  k2*f**2\n",
      " #At  50  Hz  frequency,  TL1  =  k1*f1  +  k2*f1**2\n",
      " #At  60  Hz  frequency,  TL2  =  k1*f2  +  k2*f2**2\n",
      " #Solving  equations  gives  the  values  of  k1  and  k2.\n",
      "k2  =  (5*TL2  -  6*TL1)/(5*(f2**2)  -  6*(f1**2))\n",
      "k1  =  (TL1  -  k2*f1**2)/f1\n",
      " #hysteresis  loss  Ph  =  k1*f\n",
      "Ph1  =  k1*f1\n",
      " #eddy  current  loss\n",
      "Pe1  =  k2*f1**2\n",
      " #Since  at  50  Hz  the  flux  density  is  increased  by  25%,  the  new  hysteresis  loss  is\n",
      "Ph2  =  Ph1*(1  +  x)**1.7\n",
      " #Since  at  50  Hz  the  flux  density  is  increased  by  25%,  and  the  lamination  thickness  is  increased  by  40%, \n",
      "    #the  new  eddy  current  loss  is\n",
      "Pe2  =  Pe1*((1  +  x)**2)*(1  +  y)**3\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  hysteresis  and  eddy  current  losses  at  50  Hz  are  \",round(Ph1,2),\"  W  and  \",round(  Pe1,2),\"  W  resp.\"\n",
      "print  \"\\n  (b)the  hysteresis  and  eddy  current  losses  at  50  Hz  after  increement  are  \",round(Ph2,2),\"  W  and  \",round(  Pe2,2),\"  W  resp.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  hysteresis  and  eddy  current  losses  at  50  Hz  are   325.0   W  and   75.0   W  resp.\n",
        "\n",
        "  (b)the  hysteresis  and  eddy  current  losses  at  50  Hz  after  increement  are   474.93   W  and   321.56   W  resp.\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}