{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 35: Maximum power transfer theorems and impedance matching

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 620

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the value of R for maximum power to be transferred from the source to the load,\n", "#and (b) the value of the maximum power delivered to R\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 120;# in volts\n", "thetav = 0;# in degrees\n", "Z = 15 + 1j*20;# in ohm\n", "\n", " #calculation: \n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #maximum power transfer occurs when R = mod(Z)\n", "R = abs(Z)\n", " #the total circuit impedance\n", "ZT = Z + R\n", " #Current I flowing in the load is given by\n", "I = V/ZT\n", "Imag = abs(I)\n", " #maximum power delivered\n", "P = R*I**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)maximum power transfer occurs when R is \",R,\" ohm\"\n", "print \"\\n (b) maximum power delivered is \",abs(P),\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)maximum power transfer occurs when R is 25.0 ohm\n", "\n", " (b) maximum power delivered is 180.0 W\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 620

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine\n", "#(a) the value of Z that results in maximum power transfer, and\n", "#(b) the value of the maximum power.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 120;# in volts\n", "thetav = 0;# in degrees\n", "Z = 15 + 1j*20;# in ohm\n", "\n", " #calculation: \n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #maximum power transfer occurs when X = -1*imag(Z) and R = real(Z)\n", "z = Z.real - 1j*Z.imag\n", " #Total circuit impedance at maximum power transfer condition,\n", "ZT = Z + z\n", " #Current I flowing in the load is given by\n", "I = V/ZT\n", "Imag = abs(I)\n", " #maximum power delivered\n", "P = Z.real*I**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)maximum power transfer occurs when Z is \",z.real,\" + (\", z.imag,\")i ohm\"\n", "print \"\\n (b) maximum power delivered is \",abs(P),\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)maximum power transfer occurs when Z is 15.0 + ( -20.0 )i ohm\n", "\n", " (b) maximum power delivered is 240.0 W" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 620

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine\n", "#(a) the value of the load resistance R required for maximum power transfer, and\n", "#(b) the value of the maximum power transferred.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 200;# in volts\n", "thetav = 0;# in degrees\n", "R1 = 100;# in ohm\n", "C = 1E-6;# in farad\n", "f = 1000;# in Hz\n", "\n", " #calculation: \n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #Capacitive reactance, Xc\n", "Xc = 1/(2*math.pi*f*C)\n", " #Hence source impedance,\n", "z = R1*(1j*Xc)/(R1 + 1j*Xc)\n", " #maximum power transfer is achieved when R = mod(z)\n", "R = abs(z)\n", " #Total circuit impedance at maximum power transfer condition,\n", "ZT = z + R\n", " #Current I flowing in the load is given by\n", "I = V/ZT\n", "Imag = abs(I)\n", " #maximum power transferred,\n", "P = R*Imag**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)maximum power transfer occurs when R is \",round(R,2),\" ohm\"\n", "print \"\\n (b) maximum power delivered is \",round(P,2),\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)maximum power transfer occurs when R is 84.67 ohm\n", "\n", " (b) maximum power delivered is 127.9 W" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 621

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the value of R for which the power transferred to the load is a maximum, and \n", "#(b) the value of the maximum power.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 60;# in volts\n", "thetav = 0;# in degrees\n", "R1 = 4;# in ohm\n", "XL = 10;# in ohm\n", "Xc = 7;# in ohm\n", "R2 = XL*1j;# in ohm\n", "R3 = -1j*Xc;# in ohm\n", "\n", " #calculation: \n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #maximum power transfer is achieved when\n", "R = (R1**2 + (XL - Xc)**2)**0.5\n", " #Hence source impedance,\n", "ZT = R1 + R2 + R3 + R\n", " #Current I flowing in the load is given by\n", "I = V/ZT\n", "Imag = abs(I)\n", " #maximum power transferred,\n", "P = R*Imag**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)maximum power transfer occurs when R is \",R,\" ohm\"\n", "print \"\\n (b) maximum power delivered is \",P,\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)maximum power transfer occurs when R is 5.0 ohm\n", "\n", " (b) maximum power delivered is 200.0 W" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 622

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the value of the load resistance R\n", "#calculate the value of this power.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "V = 20;# in volts\n", "R1 = 5;# in ohm\n", "R2 = 15;# in ohm\n", "\n", "#calculation: \n", " #R is removed from the network as shown in Figure 35.6\n", " #P.d. across AB, E\n", "E = (R2/(R1 + R2))*V\n", " #Impedance \u2018looking-in\u2019 at terminals AB with the source removed is given by\n", "r = R1*R2/(R1 + R2)\n", " #The equivalent Th\u00b4evenin circuit supplying terminals AB is shown in Figure 35.7. \n", " #From condition (2), for maximum power transfer\n", "R = r\n", " #Current I flowing in the load is given by\n", "I = E/(R + r)\n", " #maximum power transferred,\n", "P = R*I**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)maximum power transfer occurs when R is \",R,\" ohm\"\n", "print \"\\n (b) maximum power delivered is \",P,\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)maximum power transfer occurs when R is 3.75 ohm\n", "\n", " (b) maximum power delivered is 15.0 W" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 622

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine (a) the values of R and X that will result in maximum power being transferred across terminals AB, and \n", "#(b) the value of the maximum power.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 100;# in volts\n", "thetav = 30;# in degrees\n", "R1 = 5;# in ohm\n", "R2 = 5;# in ohm\n", "R3 = 10j;# in ohm\n", "\n", "#calculation: \n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #Resistance R and reactance X are removed from the network as shown in Figure 35.9\n", " #P.d. across AB,\n", "E = ((R2 + R3)/(R1 + R2 + R3))*V\n", " #With the source removed the impedance, z, \u2018looking in\u2019 at terminals AB is given by:\n", "z = (R2 + R3)*R1/(R1 + R2 + R3)\n", " #The equivalent Th\u00b4evenin circuit is shown in Figure 35.10. From condition 3, \n", " #maximum power transfer is achieved when X = -1*imag(z) and R = real(z)\n", "X = -1*z.imag\n", "R = z.real\n", "Z = R + 1j*X\n", " #Current I flowing in the load is given by\n", "I = E/(z + Z)\n", "Imag = abs(I)\n", " #maximum power transferred,\n", "P = R*Imag**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)maximum power transfer occurs when R is \",R,\" ohm and X is \", X,\" ohm\"\n", "print \"\\n (b) maximum power delivered is \",round(P,2),\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)maximum power transfer occurs when R is 3.75 ohm and X is -1.25 ohm\n", "\n", " (b) maximum power delivered is 416.67 W" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 624

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the optimum value of load resistance for maximum power transfer\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "Ro = 448;# in ohm\n", "tr = 8;# turn ratio N1/N2\n", "\n", " #calculation: \n", " #The equivalent input resistance r of the transformer must be Ro for maximum power transfer.\n", "r = Ro\n", "RL = r*(1/tr)**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the optimum value of load resistance is \",RL,\" ohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the optimum value of load resistance is 7.0 ohm" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8, page no. 624

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the turns ratio of an ideal transformer necessary to match the generator to a load of (40 + j19) ohm \n", "#for maximum transfer of power.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "Zo = 450 + 1j*60;# in ohm\n", "ZL = 40 + 1j*19;# in ohm\n", "\n", " #calculation: \n", " #transformer turns ratio tr = (N1/N2)\n", "Zomag = abs(Zo)\n", "ZLmag = abs(ZL)\n", "tr = (Zomag/ZLmag)**0.5\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the transformer turns ratio is \",round(tr,2),\"\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the transformer turns ratio is 3.2 " ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 9, page no. 625

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine (a) the primary current flowing, and \n", "#(b) the power dissipated in the load resistance.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "V1 = 240;# in volts\n", "V2 = 1920;# in volts\n", "R1 = 5;# in ohms\n", "R2 = 1600;# in ohms\n", "\n", "#calculation: \n", " #The network is shown in Figure 35.12.\n", " #turn ratio N1/N2 = V1/V2\n", "tr = V1/V2\n", " #Equivalent input resistance of the transformer,\n", "RL = R2\n", "r = RL*tr**2\n", " #Total input resistance,\n", "Rin = R1 + r\n", " #primary current, I1\n", "I1 = V1/Rin\n", " #For an ideal transformer V1/V2 = I2/I1\n", "I2 = I1*(V1/V2)\n", " #Power dissipated in the load resistance\n", "P = RL*I2**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a) primary current flowing is \",I1,\" A\"\n", "print \"\\n (b) Power dissipated in the load resistance is \",P,\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a) primary current flowing is 8.0 A\n", "\n", " (b) Power dissipated in the load resistance is 1600.0 W" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 10, page no. 625

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine for maximum power transfer (a) the value of the load resistance,\n", "# and (b) the power dissipated in the load.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 30;# in volts\n", "thetav = 0;# in degrees\n", "r = 20000;# in ohms\n", "tr = 20;# turn ratio\n", "\n", "#calculation:\n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180) \n", " #The network diagram is shown in Figure 35.13.\n", " #For maximum power transfer, r1 must be equal to\n", "r1 = r\n", " #load resistance RL\n", "RL = r1/tr**2\n", " #The total input resistance when the source is connected to the matching transformer is\n", "RT = r + r1\n", " #Primary current\n", "I1 = V/RT\n", " #N1/N2 = I2/I1\n", "I2 = I1*tr\n", " #Power dissipated in load resistance RL is given by\n", "P = RL*I2**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)the value of the load resistance is \",RL,\" ohm\"\n", "print \"\\n (b) Power dissipated in the load resistance is \",abs(P*1000),\"mW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)the value of the load resistance is 50.0 ohm\n", "\n", " (b) Power dissipated in the load resistance is 11.25 mW" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }