{ "metadata": { "name": "", "signature": "sha256:f149fa9435f5a9b6282f5eb58b9d4797c5c882108a3bdb7bb56b34160f170ab8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 33: Thevenin\u2019s and Norton\u2019s theorems

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 578

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 200;# in volts\n", "thetav = 0;# in degrees\n", "R1 = 5000;# in ohm\n", "R2 = 20000;# in ohm\n", "R3 = -1j*120000;# in ohm\n", "R4 = 150000;# in ohm\n", "\n", " #calculation:\n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #Initially the (150-i120)kohm\u0006 impedance is removed from the circuit as shown in Figure 33.13.\n", " #Note that, to find the current in the capacitor, \n", " #only the capacitor need have been initially removed from the circuit. \n", " #However, removing each of the components from the branch through \n", " #which the current is required will often result in a simpler solution. \n", " #From Figure 33.13,\n", " #current, I1 \n", "I1 = V/(R1 + R2)\n", " #The open-circuit e.m.f. E is equal to the p.d. across the 20 k\u0006ohm resistor, i.e.\n", "E = I1*R2\n", " #Removing the V1 source gives the network shown in Figure 33.14.\n", " #The impedance, z, looking in at the open-circuited terminals is given by\n", "z = R1*R2/(R1 + R2)\n", " #The Th\u00b4evenin equivalent circuit is shown in Figure 33.15, where current iL is given by\n", "ZL = R3 + R4\n", "IL = E/(ZL + z)\n", "ILmag = abs(IL)\n", " #current flowing in the capacitor\n", "Ic = ILmag\n", " #P.d. across the 150 kohm resistor,\n", "Vr150 = ILmag*R4\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n(a)the current flowing in the capacitor is \",round(Ic*1000,2),\" mA\"\n", "print \"\\n(b) the p.d. across the 150 ohm resistance is \",round(Vr150,2),\" V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", "(a)the current flowing in the capacitor is 0.82 mA\n", "\n", "(b) the p.d. across the 150 ohm resistance is 122.93 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 579

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "V1 = 20;# in volts\n", "V2 = 10;# in volts\n", "R1 = 2;# in ohm\n", "R2 = 1.5;# in ohm\n", "L = 235E-6;# in Henry\n", "R4 = 3;# in ohm\n", "f = 2000;# in Hz\n", "\n", " #calculation:\n", " #The impedance through which current I is flowing is initially removed from the network, as shown in Figure 33.17.\n", " #From Figure 33.17,\n", " #current, I1 \n", "I1 = (V1 - V2)/(R1 + R4)\n", " #the open circuit e.m.f. E\n", "E = V1 - I1*R1\n", " #When the sources of e.m.f. are removed from the circuit, \n", " #the impedance, z, \u2018looking in\u2019 at the break is given by\n", "z = R1*R4/(R1 + R4)\n", " #The Th\u00b4evenin equivalent circuit is shown in Figure 33.18, where inductive reactance,\n", "XL = 2*math.pi*f*L\n", "R3 = 1j*XL\n", " #Hence current\n", "I = E/(R2 + R3 + z)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the current I is \",round(I.real,2),\" + (\",round(I.imag,2),\")i A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the current I is 2.7 + ( -2.95 )i A\n" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 580

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 50;# in volts\n", "thetav = 0;# in degrees\n", "R1 = -1j*400;# in ohm\n", "R2 = 300;# in ohm\n", "R3 = 144j;# in ohm\n", "R4 = 48;# in ohm\n", "\n", " #calculation:\n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #The R3 and R4 impedance is initially removed from the network as shown in Figure 33.20.\n", " #From Figure 33.20,\n", " #current, I\n", "i = V/(R1 + R2)\n", " #the open circuit e.m.f. E\n", "E = i*R2\n", " #When the V is removed from the circuit, the impedance, z, \u2018looking in\u2019 at the break is given by\n", "z = R1*R2/(R1 + R2)\n", " #The Th\u00b4evenin equivalent circuit is shown in Figure 33.21 connected to R# and R4,\n", " #Hence current\n", "I = E/(R4 + R3 + z)\n", "Imag = abs(I)\n", " #the power dissipated in the 48 ohm resistor\n", "Pr48 = R4*Imag**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the power dissipated in the 48 ohm resistor is \",round(Pr48,2),\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the power dissipated in the 48 ohm resistor is 0.75 W" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 581

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "V = 100;# in volts\n", "R1 = 5;# in ohm\n", "R2 = 20;# in ohm\n", "R3 = 46;# in ohm\n", "R4 = 50;# in ohm\n", "R5 = 15;# in ohm\n", "R6 = 60;# in ohm\n", "R7 = 16;# in ohm\n", "R8 = 80;# in ohm\n", "\n", "#calculation:\n", " #One method of analysing a multi-branch network as shown in Figure 33.22 \n", " #is to use Th\u00b4evenin\u2019s theorem on one part of the network at a time. \n", " #For example, the part of the circuit to the left of AA may be reduced to a Th\u00b4evenin equivalent circuit.\n", " #From Figure 33.23,\n", "E1 = (R2/(R1 + R2))*V\n", "z1 = R1*R2/(R1 + R2)\n", " #Thus the network of Figure 33.22 reduces to that of Figure 33.24. \n", " #The part of the network shown in Figure 33.24 to the left of BB may be reduced \n", " #to a Th\u00b4evenin equivalent circuit, where\n", "E2 = (R4/(R3 + R4 + z1))*E1\n", "z2 = R4*(z1 + R3)/(R4 + z1 + R3)\n", " #Thus the original network reduces to that shown in Figure 33.25. \n", " #The part of the network shown in Figure 33.25 to the left of CC may be reduced \n", " #to a Th\u00b4evenin equivalent circuit, where\n", "E3 = (R6/(R5 + R6 + z2))*E2\n", "z3 = R6*(z2 + R5)/(R5 + z2 + R6)\n", " #Thus the original network reduces to that of Figure 33.26, \n", " #from which the current in the 80 ohm resistor is given by\n", "I = E3/(z3 + R7 + R8)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the current flowing in the 80 ohm resistor is \",round(I,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the current flowing in the 80 ohm resistor is 0.2 A" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 582

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 24;# in volts\n", "thetav = 0;# in degrees\n", "R1 = -1j*3;# in ohm\n", "R2 = 4;# in ohm\n", "R3 = 3j;# in ohm\n", "\n", " #calculation:\n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #Current I1 shown in Figure 33.27 is given by\n", "I1 = V/(R1 + R2 + R3)\n", " #The Th\u00b4evenin equivalent voltage, i.e., the open-circuit voltage across terminals AB, is given by\n", "E = I1*(R2 + R3)\n", " #When the voltage source is removed, the impedance z \u2018looking in\u2019 at AB is given by\n", "z = (R2 + R3)*R1/(R1 + R2 + R3)\n", " #Thus the Th\u00b4evenin equivalent circuit is as shown in Figure 33.28.\n", " #when (3.75 + i11) ohm impedance connected across terminals AB, \n", " #the current I flowing in the impedance is given by\n", "R = 3.75 + 11j;# in ohms\n", "I = E/(R + z)\n", "Imag = abs(I)\n", " #the p.d. across the( 3.75 + i11)ohm impedance.\n", "VR = I*R\n", "VRmag = abs(VR)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a) the current I flowing in the (3.75 + i11) impedance is given by is \",round(Imag,2),\" A\"\n", "print \"\\n (b) the magnitude of the p.d. across the impedance is \",round(VRmag,2),\" V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a) the current I flowing in the (3.75 + i11) impedance is given by is 3.0 A\n", "\n", " (b) the magnitude of the p.d. across the impedance is 34.86 V" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 583

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 16.55;# in volts\n", "thetav = -22.62;# in degrees\n", "R1 = 4;# in ohm\n", "R2 = 1j*2;# in ohm\n", "R3 = 1j*6;# in ohm\n", "R4 = 3;# in ohm\n", "R5 = 5;# in ohm\n", "R6 = -1*1j*8;# in ohm\n", "\n", " #calculation:\n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #The capacitor is removed from branch AB, as shown in Figure 33.30.\n", " #Impedance, Z\n", "Z1 = R3 + R4 + R5\n", "Z = R1 + (Z1*R2/(R2 + Z1))\n", "I1 = V/Z\n", "I2 = (R2/(R2 +Z1))*I1\n", " #The open-circuit voltage, E\n", "E = I2*R5\n", " #If the voltage source is removed from Figure 33.30, the impedance, z, \u2018looking in\u2019 at AB is given by\n", "z = R5*((R1*R2/(R1 + R2)) + R3 + R4)/(R5 + ((R1*R2/(R1 + R2)) + R3 + R4))\n", " #The Th\u00b4evenin equivalent circuit is shown in Figure 33.31, \n", " #where the current flowing in the capacitor, I, is given by\n", "I = E/(z + R6)\n", "Imag = abs(I)\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the current flowing in the capacitor of the network is \",round(Imag,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the current flowing in the capacitor of the network is 0.43 A" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 584

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv1 = 5;# in volts\n", "rv2 = 10;# in volts\n", "thetav1 = 45;# in degrees\n", "thetav2 = 0;# in degrees\n", "R1 = 8;# in ohm\n", "R2 = 5;# in ohm\n", "R3 = 3j;# in ohm\n", "R4 = 4;# in ohm\n", "\n", "#calculation:\n", " #voltage\n", "V1 = rv1*math.cos(thetav1*math.pi/180) + 1j*rv1*math.sin(thetav1*math.pi/180)\n", "V2 = rv2*math.cos(thetav2*math.pi/180) + 1j*rv2*math.sin(thetav2*math.pi/180)\n", " #Current I1 shown in Figure 33.32 is given by\n", "I1 = V2/(R2 + R3 + R4)\n", " #Hence the voltage drop across the 5 ohm\u0006 resistor is given by VX is in the direction shown in Figure 33.32,\n", "Vx = I1*R2\n", " #The open-circuit voltage E across PQ is the phasor sum of V1, Vx and V2, as shown in Figure 33.33.\n", "E = V2 - V1 - Vx\n", " #The impedance, z, \u2018looking in\u2019 at terminals PQ with the voltage sources removed is given by\n", "z = R1 + R2*(R3 + R4)/(R2 + R3 + R4)\n", " #The Th\u00b4evenin equivalent circuit is shown in Figure 33.34 with the 2 ohm resistance connected across terminals PQ.\n", " #The current flowing in the 2 ohm\u0006 resistance is given by\n", "R = 2;# in ohms\n", "I = E/(z + R)\n", "Imag = abs(I)\n", " #power P dissipated in the 2 ohm\u0006 resistor is given by\n", "Pr2 = R*Imag**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n power P dissipated in the 2 ohm resistor is \",round(Pr2,2),\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " power P dissipated in the 2 ohm resistor is 0.07 W" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8, page no. 585

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 30;# in volts\n", "thetav = 0;# in degrees\n", "R1 = 15;# in ohm\n", "R2 = 40;# in ohm\n", "R3 = 20j;# in ohm\n", "R4 = 20;# in ohm\n", "R5 = 5j;# in ohm\n", "R6 = 5;# in ohm\n", "R7 = -1j*25;# in ohm\n", "\n", " #calculation:\n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #The R7\u0006 is initially removed from the network, as shown in Figure 33.36\n", "Z1 = R1\n", "Z2 = R2\n", "Z3 = R3 + R4\n", "Z4 = R5 + R6\n", " #P.d. between A and C,\n", "Vac = (Z1/(Z1 + Z4))*V\n", " #P.d. between B and C,\n", "Vbc = (Z2/(Z2 + Z3))*V\n", " #Assuming that point A is at a higher potential than point B, then the p.d. between A and B is\n", "Vab = Vac - Vbc\n", " #the open-circuit voltage across AB is given by\n", "E = Vab\n", " #Point C is at a potential of V . Between C and A is a volt drop of Vac. Hence the voltage at point A is\n", "Va = V - Vac\n", " #Between points C and B is a voltage drop of Vbc. Hence the voltage at point B\n", "Vb = V - Vbc\n", " #Replacing the V source with a short-circuit (i.e., zero internal impedance) \n", " #gives the network shown in Figure 33.37(a). The network is shown redrawn in Figure 33.37(b) \n", " #and simplified in Figure 33.37(c). Hence the impedance, z, \u2018looking in\u2019 at terminals AB is given by\n", "z = Z1*Z4/(Z1 + Z4) + Z2*Z3/(Z2 + Z3)\n", " #The Th\u00b4evenin equivalent circuit is shown in Figure 33.38, where current I is given by\n", "I = E/(z + R7)\n", "Imag = abs(I)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the current flowing in the capacitor is \",round(Imag,2),\" A in direction from B to A.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the current flowing in the capacitor is 0.13 A in direction from B to A." ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 9, page no. 589

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "V = 5;# in volts\n", "R1 = 2;# in ohm\n", "R2 = 3;# in ohm\n", "R3 = -1j*3;# in ohm\n", "R4 = 2.8;# in ohm\n", "\n", " #calculation:\n", " #The branch containing the R4 is short-circuited, as shown in Figure 33.48.\n", " #The R2 in parallel with a short-circuit is the same as R2 in parallel with 0 ohm \n", " #giving an equivalent impedance of\n", "Z1 = R2*0/(R3 + 0)\n", " #Hence the network reduces to that shown in Figure 33.49, where\n", "Isc = V/R1\n", " #If the Voltage source is removed from the network the input impedance, z, \u2018looking-in\u2019 \n", " #at a break made in AB of Figure 33.48 gives\n", "z = R1*R2/(R1 + R2)\n", " #The Norton equivalent network is shown in Figure 33.51, where current I is given by\n", "I = (z/(z + R4 + R3))*Isc\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the current flowing in the capacitor is \",round(I.real,2),\" + (\", round(I.imag,2),\")i A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the current flowing in the capacitor is 0.48 + ( 0.36 )i A" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 10, page no. 589

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "V1 = 20;# in volts\n", "V2 = 10;# in volts\n", "R1 = 2;# in ohm\n", "R2 = 1.5;# in ohm\n", "R3 = 2.95j;# in ohm\n", "R4 = 3;# in ohm\n", "\n", " #calculation:\n", " #The inductive branch is initially short-circuited, as shown in Figure 33.53.\n", " #From Figure 33.53,\n", "I1 = V1/R1\n", "I2 = V2/R4\n", "Isc = I1 + I2\n", " #If the voltage sources are removed, the impedance, z, \u2018looking in\u2019 at a break made in AB is given by\n", "z = R1*R4/(R1 + R4)\n", " #The Norton equivalent network is shown in Figure 33.54, where current I is given by\n", "I = (z/(z + R2 + R3))*Isc\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the current flowing in the inductive branch is \",round(I.real,2),\" + (\",round( I.imag,2),\")i A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the current flowing in the inductive branch is 2.7 + ( -2.95 )i A" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 11, page no. 590

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "V = 10;# in volts\n", "R1 = 1;# in ohm\n", "R2 = 4;# in ohm\n", "R3 = 4;# in ohm\n", "R4 = -2j;# in ohm\n", "\n", "#calculation:\n", "Isc = V/R3\n", "z = 1/(1/R2 + 1/R3 + 1/R4)\n", "I = (z/(R1 + z))*Isc\n", "pd1 = abs(I)*R1\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the magnitude of the p.d. across the 1 ohm resistor is \",round(pd1, 2),\"V\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the magnitude of the p.d. across the 1 ohm resistor is 1.58 V" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 12, page no. 591

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "rv = 20;# in volts\n", "thetav = 0;# in degrees\n", "R1 = 2;# in ohm\n", "R2 = 4;# in ohm\n", "R3 = 3j;# in ohm\n", "R4 = -1j*3;# in ohm\n", "\n", " #calculation:\n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #Terminals AB are initially short-circuited, as shown in Figure 33.61.\n", " #The circuit impedance Z presented to the voltage source is given by\n", "Z = R1 + R4*(R2 + R3)/(R2 + R3 + R4)\n", " #Thus current I in Figure 33.61 is given by\n", "I = V/Z\n", "Isc = ((R2 + R3)/(R2 + R3 + R4))*I\n", " #Removing the voltage source of Figure 33.60 gives the network Figure 33.62 of Figure 33.62. \n", " #Impedance, z, \u2018looking in\u2019 at terminals AB is given by\n", "z = R4 + R1*(R2 + R3)/(R2 + R3 + R1)\n", " #The Norton equivalent network is shown in Figure 33.63.\n", "R = 5;# in ohms\n", " #Current IL\n", "IL = (z/(z + R))*Isc\n", "ILmag = abs(IL)\n", " #the power dissipated in the 5 ohm resistor is\n", "Pr5 = R*ILmag**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the power dissipated in the 5 ohm resistor is \",round(Pr5,2),\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the power dissipated in the 5 ohm resistor is 22.54 W" ] } ], "prompt_number": 12 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 13, page no. 592

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import numpy\n", "import cmath\n", "#initializing the variables:\n", "rv1 = 5;# in volts\n", "rv2 = 10;# in volts\n", "thetav1 = 45;# in degrees\n", "thetav2 = 0;# in degrees\n", "R1 = 8;# in ohm\n", "R2 = 5;# in ohm\n", "R3 = 3j;# in ohm\n", "R4 = 4;# in ohm\n", "\n", " #calculation:\n", " #voltage\n", "V1 = rv1*math.cos(thetav1*math.pi/180) + 1j*rv1*math.sin(thetav1*math.pi/180)\n", "V2 = rv2*math.cos(thetav2*math.pi/180) + 1j*rv2*math.sin(thetav2*math.pi/180)\n", " #Terminals PQ are initially short-circuited, as shown in Figure 33.65.\n", " #Currents I1 and I2 are shown labelled. Kirchhoff\u2019s laws are used.\n", " #For loop ABCD, and moving anticlockwise,\n", " #I1*(R2 + R3 + R4) + I2*(R3 + R4) = V2\n", " #For loop DPQC, and moving clockwise,\n", " #R2*I1 - R1*I2 = V2 - V1\n", " #Solving Equations by using determinants gives\n", "d1 = [[V2, (R3 + R4)],[(V2 - V1), -1*R1]]\n", "D1 = numpy.linalg.det(d1)\n", "d2 = [[(R2 + R3 + R4), V2],[R2, (V2 - V1)]]\n", "D2 = numpy.linalg.det(d2)\n", "d = [[(R2 + R3 + R4), (R3 + R4)],[R2, -1*R1]]\n", "D = numpy.linalg.det(d)\n", "I1 = D1/D\n", "I2 = D2/D\n", " #the short-circuit current Isc\n", "Isc = I2\n", " #The impedance, z, \u2018looking in\u2019 at a break made between P and Q is given by\n", "z = R1 + R2*(R3 + R4)/(R2 + R3 + R4)\n", " #The Norton equivalent circuit is shown in Figure 33.66, where current I is given by\n", "R = 2;#in ohm\n", "I = (z/(z + R))*Isc\n", "Imag = abs(I)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the magnitude of the current flowing 5 ohm resistor is \",round(Imag,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the magnitude of the current flowing 5 ohm resistor is 0.19 A" ] } ], "prompt_number": 13 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 15, page no. 595

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "E1 = 12;# in volts\n", "E2 = 24;# in volts\n", "Z1 = 3;# in ohm\n", "Z2 = 2;# in ohm\n", "R1 = 4j;# in ohm\n", "R2 = 1.8;# in ohm\n", "\n", "#calculation:\n", "Z3 = R1 + R2\n", " #For the branch containing the E1 source, conversion to a Norton equivalent network gives\n", "Isc1 = E1/Z1\n", " #For the branch containing the E2 source, conversion to a Norton equivalent circuit gives\n", "Isc2 = E2/Z2\n", " #Thus Figure 33.73 shows a network equivalent to Figure 33.72. From Figure 33.73, \n", " #the total short-circuit current\n", "Isc = Isc1 + Isc2\n", " #the total impedance is given by\n", "z = Z1*Z2/(Z1 + Z2)\n", " #Thus Figure 33.73 simplifies to Figure 33.74.\n", " #The open-circuit voltage across AB of Figure 33.74, E\n", "E = Isc*z\n", " #the impedance \u2018looking in\u2019 at AB,is z\n", " #the Th\u00b4evenin equivalent circuit is as shown in Figure 33.75.\n", "R = 1.8 + 4j;# in ohm\n", " #when R impedance is connected to terminals AB of Figure 33.75, the current I flowing is given by\n", "I = E/(z + R)\n", "Imag = abs(I)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the magnitude of the current flowing (1.8 + i4) ohm resistor is \",round(Imag,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the magnitude of the current flowing (1.8 + i4) ohm resistor is 3.84 A" ] } ], "prompt_number": 14 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 16, page no. 596

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "V1 = 5;# in volts\n", "V2 = 10;# in volts\n", "i = 0.001;# in Amperes\n", "R1 = 1000;# in ohm\n", "R2 = 4000;# in ohm\n", "R3 = 2000;# in ohm\n", "R4 = 200;# in ohm\n", "R5 = -1j*4000;# in ohm\n", "\n", " #calculation: \n", " #For the branch containing the V1 source, conversion to a Norton equivalent network gives\n", "Isc1 = V1/R1\n", "z1 = R1\n", " #For the branch containing the V2 source, conversion to a Norton equivalent circuit gives\n", "Isc2 = V2/R2\n", "z2 = R2\n", " #Thus the circuit of Figure 33.76 converts to that of Figure 33.77.\n", " #The above two Norton equivalent networks shown in Figure 33.77 may be combined, \n", " #since the total short-circuit current is\n", "Isc = Isc1 + Isc2\n", " #the total impedance is given by\n", "Z1 = z1*z2/(z1 + z2)\n", " #Both of the Norton equivalent networks shown in Figure 33.78 may be converted to Th\u00b4evenin equivalent circuits. \n", " #Open-circuit voltage across CD is\n", "Ecd = Isc*Z1\n", " #the impedance \u2018looking in\u2019 at CD is Z1\n", " #Open-circuit voltage across EF\n", "Eef = i*R3\n", " #the impedance \u2018looking in\u2019 Figure 33.79 at EF\n", "Z2 = R3\n", " #Thus Figure 33.78 converts to Figure 33.79.\n", " #Combining the two Th\u00b4evenin circuits gives e.m.f.\n", "E = Ecd - Eef\n", " #impedance z\n", "z = Z1 + Z2\n", " #the Th\u00b4evenin equivalent circuit for terminals AB of Figure 33.76 is as shown in Figure 33.80.\n", "Z3 = R4 + R5\n", " #If an impedance Z3 is connected across terminals AB, then the current I flowing is given by\n", "I = E/(z + Z3)\n", "Imag = abs(I)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the current in the capacitive branch is \", Imag*1000,\"mA\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the current in the capacitive branch is 0.8 mA" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 17, page no. 597

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "V = 5;# in volts\n", "i = 0.004;# in Amperes\n", "R1 = 2000;# in ohm\n", "R2 = 1000j;# in ohm\n", "\n", "#calculation: \n", " #Converting the Th\u00b4evenin circuit to a Norton network gives\n", "Isc1 = V/R2\n", " #Thus Figure 33.81 converts to that shown in Figure 33.82. \n", " #The two Norton equivalent networks may be combined, giving\n", "Isc = Isc1 + i\n", "z = R1*R2/(R1 + R2)\n", " #This results in the equivalent network shown in Figure 33.83. \n", " #Converting to an equivalent Th\u00b4evenin circuit gives open circuit e.m.f. across AB,\n", "E = Isc*z\n", " #Thus the The\u00b4venin equivalent circuit is as shown in Figure 33.84.\n", "R = 600 - 800j;# in ohms\n", " #When a R impedance is connected across AB, the current I flowing is given by\n", "I = E/(z + R)\n", "Imag = abs(I)\n", " #the power dissipated in the R resistor is\n", "PR = R.real*Imag**2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the power dissipated in the (600 - i800) ohm resistor is \",round(PR*1000,2),\"mW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the power dissipated in the (600 - i800) ohm resistor is 19.68 mW" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }