{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 26: Power in a.c. circuits

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 466

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the active power in the circuit\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "RL = 12j;# in ohm\n", "R = 5;# in ohm\n", "rv = 52;# in volts\n", "thetav = 30;# in degree\n", "\n", "#calculation:\n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #impedance, Z\n", "Z = R + RL\n", " #current\n", "I = V/Z\n", " #Active power, P\n", "Pa = V.real*I.real + V.imag*I.imag\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\nthe active power in the circuit \",Pa,\" W\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", "the active power in the circuit 80.0 W" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 467

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the active power, and (b) the reactive power.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "V = 120 + 200j;# in volts\n", "I = 15 + 8j;# in amperes\n", "\n", "#calculation:\n", " #Active power, P\n", "Pa = V.real*I.real + V.imag*I.imag\n", " #Reactive power, Q\n", "Q = V.imag*I.real - V.real*I.imag\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a) the active power in the circuit \",Pa,\" W\\n\"\n", "print \"\\n (b) the reactive power in the circuit \",Q,\" var\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a) the active power in the circuit 3400.0 W\n", "\n", "\n", " (b) the reactive power in the circuit 2040.0 var" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 468

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine (a) the current flowing and its phase, (b) the value of resistance R, and (c) the value of capacitance C.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "Vm = 141.4;# in volts\n", "w = 10000;# in rad/sec\n", "phiv = math.pi/9;# in radian\n", "Pd = 1732;# in Watts\n", "pf = 0.866;# power fctr\n", "\n", "#calculation:\n", " #the rms voltage,\n", "Vrms = 0.707*Vm\n", " #Power P = V*I*cos(phi)\n", " #current magnitude, Irms\n", "Irms = Pd/(Vrms*pf)\n", "phid = math.acos(pf)\n", " #current phase angle\n", "phii = phiv + phid\n", "phiid = phii*180/math.pi# in degrees\n", " #Voltage, V\n", "V = Vrms*math.cos(phiv) + 1j*Vrms*math.sin(phiv)\n", " #current, I\n", "I = Irms*math.cos(phii) + 1j*Irms*math.sin(phii)\n", " #Impedance, Z\n", "Z = V/I\n", " #resistance, R\n", "R = Z.real\n", " #capacitive reactance, Xc\n", "Xc = abs(Z.imag)\n", " #capacitance, C\n", "C = 1/ (w*Xc)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)the current flowing and Circuit phase angle is \",round(Irms,2),\"/_\",round(phiid,2),\"deg A\\n\"\n", "print \"\\n (b) the resistance is \",round(R,2),\" ohm\\n\"\n", "print \"\\n (c) the capacitance is \",round(C*1E6,2),\"uF\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)the current flowing and Circuit phase angle is 20.01 /_ 50.0 deg A\n", "\n", "\n", " (b) the resistance is 4.33 ohm\n", "\n", "\n", " (c) the capacitance is 40.02 uF" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 468

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine the active power developed between points (a) A and B, (b) C and D, (c) E and F.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "rv = 100;# in volts\n", "thetav = 0;# in degrees\n", "R = 5;# in ohm\n", "R1 = 3;# in ohms\n", "RL = 4j;# in ohm\n", "Rc = -10j;# in ohms\n", "\n", "#calculation:\n", " #impedance, Z1\n", "Z1 = R1 + RL\n", " #impedance, Zc\n", "Zc = Rc\n", " #Circuit impedance, Z\n", "Z = R + (Z1*Zc/(Z1 + Zc))\n", " #voltage\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", "I = V/Z\n", "Imag = ((I.real)**2 + (I.imag)**2)**0.5\n", " #Active power developed between points A and B\n", "Pab = (Imag**2)*R\n", " #Active power developed between points C and D\n", "Pcd = (Imag**2)*Zc.real\n", " #Current, I1\n", "I1 = I*Zc/(Zc + Z1)\n", "I1mag = ((I1.real)**2 + (I1.imag)**2)**0.5\n", " #active power developed between points E and F\n", "Pef = (I1mag**2)*Z1.real\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Active power developed between points A and B is \",round(Pab,2),\" W\\n\"\n", "print \"\\n (b)Active power developed between points C and D is \",round(Pcd,2),\" W\\n\"\n", "print \"\\n (c)Active power developed between points E and F is \",round(Pef,2),\" W\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Active power developed between points A and B is 339.62 W\n", "\n", "\n", " (b)Active power developed between points C and D is 0.0 W\n", "\n", "\n", " (c)Active power developed between points E and F is 452.83 W" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 469

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the apparent power, (b) the reactive power, \n", "#(c) the value and phase of current I, and (d) the value of impedance Z.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "Pa = 400;# in Watts\n", "rv = 100;# in volts\n", "thetav = 30;# in degrees\n", "R = 4;# in ohm\n", "pf = 0.766;# power factor\n", "\n", " #calculation:\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #magnitude of apparent power,S = V*I\n", "S = Pa/pf\n", "phi = math.acos(pf)\n", "theta = phi*180/math.pi# in degrees\n", " #Reactive power Q\n", "Q = S*math.sin(phi)\n", " #magnitude of current\n", "Imag = S/rv\n", "thetai = thetav - theta\n", "I = Imag*math.cos(thetai*math.pi/180) + 1j*Imag*math.sin(thetai*math.pi/180)\n", " #Total circuit impedance ZT\n", "ZT = V/I\n", " #impedance Z\n", "Z = ZT - R\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)apparent power is \",round(S,2),\" VA\\n\"\n", "print \"\\n (b)reactive power is \",round(Q,1),\" var lagging\\n\"\n", "print \"\\n (c)the current flowing and Circuit phase angle is \",round(Imag,2),\"/_\",round(thetai,2),\"deg A\\n\"\n", "print \"\\n (d)impedance, Z is \",round(Z.real,2),\" + (\",round( Z.imag,2),\")i ohm\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)apparent power is 522.19 VA\n", "\n", "\n", " (b)reactive power is 335.7 var lagging\n", "\n", "\n", " (c)the current flowing and Circuit phase angle is 5.22 /_ -10.0 deg A\n", "\n", "\n", " (d)impedance, Z is 10.67 + ( 12.31 )i ohm\n" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 471

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the rating (in kilovars) of the capacitors required.\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "S = 300000;# in VA\n", "pf1 = 0.70;# in power factor\n", "pf2 = 0.90;# in power factor\n", "\n", "#calculation:\n", " #active power, P\n", "Pa = S*pf1\n", "phi1 = math.acos(pf1)\n", "phi1d = phi1*180/math.pi\n", " #Reactive power, Q\n", "Q = S*math.sin(phi1)\n", "phi2 = math.acos(pf2)\n", "phi2d = phi2*180/math.pi\n", " #The capacitor rating needed to improve the power factor to 0.90\n", " #the capacitor rating,\n", "Pr = Q - (Pa*math.tan(phi2))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n the rating (in kilovars) of the capacitors is \",round((Pr/1E3),2),\" kvar leading\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " the rating (in kilovars) of the capacitors is 112.54 kvar leading" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 471

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the supply current, (b) the active, apparent and reactive power,\n", "#(c) the rating of a capacitor (d) the value of capacitance\n", "from __future__ import division\n", "import math\n", "import cmath\n", "#initializing the variables:\n", "Z = 3 + 4j;# in ohms\n", "rv = 50;# in volts\n", "thetav = 30;# in Degrees\n", "f = 1500;# in Hz\n", "pf1 = 0.966;# in power factor\n", "\n", "#calculation:\n", "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", " #Supply current, I\n", "I = V/Z\n", "Istr = I.real - 1j*I.imag\n", " #Apparent power, S\n", "S = V*Istr\n", " #active power, Pa\n", "Pa = S.real\n", "#reactive power, Q\n", "Q = abs(S.imag)\n", " #apparent power, S\n", "S = (S.real**2 + S.imag**2)**0.5\n", "phi1 = math.acos(pf1)\n", "phi1d = phi1*180/math.pi\n", " #rating of the capacitor \n", "Pr = Q - Pa*math.tan(phi1)\n", " #Current in capacitor, Ic\n", "Ic = Pr/rv\n", " #Capacitive reactance, Xc\n", "Xc = rv/Ic\n", "C = 1/(2*math.pi*f*Xc)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)supply current, I is \",round(I.real,2),\" + (\",round( I.imag,2),\")i A\\n\"\n", "print \"\\n (b)active power is \",round(Pa,2),\" W, apparent power is \",round( S,2),\" W \"\n", "print \"and reactive power is \",round( Q,2),\" W lagging\\n\"\n", "print \"\\n (c)the rating of the capacitors is \",round(Pr,2),\" var leading\\n\"\n", "print \"\\n (d)value of capacitance needed to improve the power factor to 0.966 lagging is \",round( C*1E6,2),\"uF\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)supply current, I is 9.2 + ( -3.93 )i A\n", "\n", "\n", " (b)active power is 300.0 W, apparent power is 500.0 W and reactive power is 400.0 W lagging\n", "\n", "\n", " (c)the rating of the capacitors is 319.71 var leading\n", "\n", "\n", " (d)value of capacitance needed to improve the power factor to 0.966 lagging is 13.57 uF" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }