{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 19: Three phase systems

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 299

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the system phase voltage, (b) the phase current and (c) the line current.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Vl = 415;# in Volts\n", "Rp = 30;# in ohms\n", "\n", "#calculation:\n", "Vp = Vl/(3**0.5)\n", "Ip = Vp/Rp\n", "Il = Ip\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)the system phase voltage is \",round(Vp,2),\" V\"\n", "print \"\\n (b)phase current is \",round(Ip,2),\" A\"\n", "print \"\\n (c)line current is \",round(Il,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)the system phase voltage is 239.6 V\n", "\n", " (b)phase current is 7.99 A\n", "\n", " (c)line current is 7.99 A" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 299

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the line voltage if the supply frequency is 50 Hz\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R = 30;# in ohms\n", "L = 0.1273;# in Henry\n", "Ip = 5.08;# in Amperes\n", "f = 50;# in Hz\n", "\n", "#calculation:\n", "XL = 2*math.pi*f*L\n", "Zp = (R*R + XL*XL)**0.5\n", "Il = Ip\n", "Vp = Ip*Zp\n", "Vl = Vp*(3**0.5)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)line voltage is \",round(Vl,2),\" V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)line voltage is 439.89 V" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 301

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the current in each line and (b) the current in the neutral conductor.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "V = 415;# in Volts\n", "PR = 24000;# in Watt\n", "Py = 18000;# in Watt\n", "Pb = 12000;# in Watt\n", "VR = 240;# in Volts\n", "Vy = 240;# in Volts\n", "Vb = 240;# in Volts\n", "\n", "#calculation:\n", " #For a star-connected system VL = Vp*(3**0.5)\n", "Vp = V/(3**0.5)\n", "phir = 90*math.pi/180\n", "phiy = 330*math.pi/180\n", "phib = 210*math.pi/180\n", " # I = P/V for a resistive load\n", "IR = PR/VR\n", "Iy = Py/Vy\n", "Ib = Pb/Vb\n", "Inh = IR*math.cos(phir) + Ib*math.cos(phib) + Iy*math.cos(phiy)\n", "Inv = IR*math.sin(phir) + Ib*math.sin(phib) + Iy*math.sin(phiy)\n", "In = (Inh**2 + Inv**2)**0.5\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)cuurnt in R line is \",round(IR,2),\" A, cuurnt in Y line is \",round(Iy,2),\" A \"\n", "print \"and cuurnt in B line is \",round(Ib,2),\" A\"\n", "print \"\\n (b)cuurnt in neutral line is \",round(In,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)cuurnt in R line is 100.0 A, cuurnt in Y line is 75.0 A and cuurnt in B line is 50.0 A\n", "\n", " (b)cuurnt in neutral line is 43.3 A" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 302

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the phase current, and (b) the line current.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R = 30;# in ohms\n", "L = 0.1273;# in Henry\n", "VL = 440;# in Volts\n", "f = 50;# in Hz\n", "\n", "#calculation:\n", "XL = 2*math.pi*f*L\n", "Zp = (R*R + XL*XL)**0.5\n", "Vp = VL\n", " #Phase current\n", "Ip = Vp/Zp\n", " #For a delta connection,\n", "IL = Ip*(3**0.5)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)the phase current \",round(Ip,2),\" A\"\n", "print \"\\n (b)line current \",round(IL,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)the phase current 8.8 A\n", "\n", " (b)line current 15.24 A" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 302

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine the capacitance of each of the capacitors.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "IL = 15;# in Amperes\n", "VL = 415;# in Volts\n", "f = 50;# in Hz\n", "\n", "#calculation:\n", " #For a delta connection\n", "Ip = IL/(3**0.5)#phase current\n", "Vp = VL\n", " #Capacitive reactance per phase\n", "Xc = Vp/Ip\n", "C = 1/(2*math.pi*f*Xc)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n capacitance is \",round(C*1E6,2),\"uF\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " capacitance is 66.43 uF" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 303

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate for each connection (a) the line and phase voltages and (b) the phase and line currents.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R = 3;# in ohms\n", "XL = 4;# in ohms\n", "VL = 415;# in Volts\n", "\n", "#calculation:\n", " #For a star connection:\n", " #IL = Ip\n", " #VL = Vp*(3**0.5)\n", "VLs = VL\n", "Vps = VLs/(3**0.5)\n", " #Impedance per phase,\n", "Zp = (R*R + XL*XL)**0.5\n", "Ips = Vps/Zp\n", "ILs = Ips\n", " #For a delta connection:\n", " #VL = Vp\n", " #IL = Ip*(3**0.5)\n", "VLd = VL\n", "Vpd = VLd\n", "Ipd = Vpd/Zp\n", "ILd = Ipd*(3**0.5)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)the line voltage for star connection is \",round(VLs,2),\" V \"\n", "print \"and the phase voltage for star connection is \",round(Vps,2),\" V \"\n", "print \"and the line voltage for delta connection is \",round(VLd,2),\" V \"\n", "print \"and the phase voltage for delta connection is \",round(Vpd,2),\" V\"\n", "print \"\\n (b)the line current for star connection is \",round(ILs,2),\" A \"\n", "print \"and the phase current for star connection is \",round(Ips,2),\" A \"\n", "print \"and the line current for delta connection is \",round(ILd,2),\" A \"\n", "print \"and the phase current for delta connection is \",round(Ipd,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)the line voltage for star connection is 415.0 V \n", "and the phase voltage for star connection is 239.6 V \n", "and the line voltage for delta connection is 415.0 V \n", "and the phase voltage for delta connection is 415.0 V\n", "\n", " (b)the line current for star connection is 47.92 A \n", "and the phase current for star connection is 47.92 A \n", "and the line current for delta connection is 143.76 A \n", "and the phase current for delta connection is 83.0 A\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8, page no. 304

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the total power dissipated by the resistors.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Rp = 12;# in ohms\n", "VL = 415;# in Volts\n", "\n", "#calculation:\n", " #Power dissipated, P = VL*IL*(3**0.5)*cos(phi) or P = 3*Ip*Ip*Rp)\n", "Vp = VL/(3**0.5)# since the resistors are star-connected\n", " #Phase current, Ip\n", "Zp = Rp\n", "Ip = Vp/Zp\n", " #For a star connection\n", "IL = Ip\n", " # For a purely resistive load, the power factor cos(phi) = 1\n", "pf = 1\n", "P = VL*IL*(3**0.5)*pf\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)total power dissipated by the resistors is \",round(P,2),\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)total power dissipated by the resistors is 14352.08 W" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 9, page no. 304

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine the power factor of the system.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "P = 5000;# in Watts\n", "IL = 8.6;# in amperes\n", "VL = 400;# in Volts\n", "\n", "#calculation:\n", " #Power dissipated, P = VL*IL*(3**0.5)*cos(phi) or P = 3*Ip*Ip*Rp)\n", "pf = P/(VL*IL*(3**0.5))\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n power factor is \",round(pf,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " power factor is 0.839" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 10, page no. 304

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the total power dissipated in each case.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R = 10;# in ohms\n", "L = 0.042;# in Henry\n", "VL = 415;# in Volts\n", "f = 50;# in Hz\n", "\n", "#calculation:\n", " #For a star connection:\n", " #IL = Ip\n", " #VL = Vp*(3**0.5)\n", "XL = 2*math.pi*f*L\n", "Zp = (R*R + XL*XL)**0.5\n", "VLs = VL\n", "Vps = VLs/(3**0.5)\n", " #Impedance per phase,\n", "Ips = Vps/Zp\n", "ILs = Ips\n", " #Power dissipated, P = VL*IL*(3**0.5)*cos(phi) or P = 3*Ip*Ip*Rp)\n", "pfs = R/Zp\n", "Ps = VLs*ILs*(3**0.5)*pfs\n", "\n", " #For a delta connection:\n", " #VL = Vp\n", " #IL = Ip*(3**0.5)\n", "VLd = VL\n", "Vpd = VLd\n", "Ipd = Vpd/Zp\n", "ILd = Ipd*(3**0.5)\n", " #Power dissipated, P = VL*IL*(3**0.5)*cos(phi) or P = 3*Ip*Ip*Rp)\n", "pfd = R/Zp\n", "Pd = VLd*ILd*(3**0.5)*pfd\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n total power dissipated in star is \",round(Ps,2),\" W and in delta is \",round(Pd,2),\" W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " total power dissipated in star is 6283.29 W and in delta is 18849.88 W" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 11, page no. 305

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine (a) the power input, (b) the line current and (c) the phase current\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Po = 12750;# in Watts\n", "pf = 0.77;# power factor\n", "eff = 0.85;\n", "VL = 415;# in Volts\n", "\n", "#calculation:\n", " #eff = power_out/power_in\n", "Pi = Po/eff\n", " #Power P = VL*IL*(3**0.5)*cos(phi) or P = 3*Ip*Ip*Rp)\n", "IL = Pi/(VL*(3**0.5)*pf)# line current\n", " #For a delta connection:\n", " #IL = Ip*(3**0.5)\n", "Ip = IL/(3**0.5)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)power input is \",round(Pi,2),\" W\"\n", "print \"\\n (b)line current is \",round(IL,2),\" A\"\n", "print \"\\n (c)phase current is \",round(Ip,2),\" A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)power input is 15000.0 W\n", "\n", " (b)line current is 27.1 A\n", "\n", " (c)phase current is 15.65 A" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 13, page no. 308

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate (a) the current supplied by the alternator and (b) the output power and the kVA of the alternator\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R = 30;# in ohms\n", "XL = 40;# in ohms\n", "VL = 400;# in Volts\n", "\n", "#calculation:\n", "Zp = (R*R + XL*XL)**0.5\n", " #a delta-connected load\n", "Vp = VL\n", " #Phase current\n", "Ip = Vp/Zp\n", "IL = Ip*(3**0.5)\n", " #Alternator output power is equal to the power dissipated by the load.\n", " #Power P = VL*IL*(3**0.5)*cos(phi) or P = 3*Ip*Ip*Rp)\n", "pf = R/Zp\n", "P = VL*IL*(3**0.5)*pf\n", " #Alternator output kVA,\n", "S = VL*IL*(3**0.5)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)the current supplied by the alternator is \",round(IL,2),\" A\"\n", "print \"\\n (b)output power is \",round(P/1000,2),\"KW and kVA of the alternator is \",round(S/1000,2),\"kVA\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)the current supplied by the alternator is 13.86 A\n", "\n", " (b)output power is 5.76 KW and kVA of the alternator is 9.6 kVA" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 14, page no. 308

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate (a) the phase current, (b) the line current, (c) the total power dissipated and \n", "#(d) the kVA rating of the load. Draw the complete phasor diagram for the load.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R = 30;# in ohms\n", "C = 80E-6;# in Farads\n", "f = 50;# in Hz\n", "VL = 400;# in Volts\n", "\n", "#calculation:\n", " #Capacitive reactance\n", "Xc = 1/(2*math.pi*f*C)\n", "Zp = (R*R + Xc*Xc)**0.5\n", "pf = R/Zp\n", " #a delta-connected load\n", "Vp = VL\n", " #Phase current\n", "Ip = Vp/Zp\n", "IL = Ip*(3**0.5)\n", " #Power P = VL*IL*(3**0.5)*cos(phi) or P = 3*Ip*Ip*Rp)\n", "P = VL*IL*(3**0.5)*pf\n", " #Alternator output kVA,\n", "S = VL*IL*(3**0.5)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)the phase current is \",round(Ip,2),\" A\"\n", "print \"\\n (b)the line current is \",round(IL,2),\" A\"\n", "print \"\\n (c) power is \",round(P/1000,2),\"kW\"\n", "print \"\\n (d)kVA of the alternator is \", round(S/1000,2),\"kVA\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)the phase current is 8.03 A\n", "\n", " (b)the line current is 13.9 A\n", "\n", " (c) power is 5.8 kW\n", "\n", " (d)kVA of the alternator is 9.63 kVA" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 15, page no. 309

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine (a) the total power input and (b) the load power factor.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Pi1 = 8000;# in Watts\n", "Pi2 = 4000;# in Watts\n", "\n", "#calculation:\n", " #Total input power\n", "Pi = Pi1 + Pi2\n", "phi = math.atan((Pi1 - Pi2)*(3**0.5)/(Pi1 + Pi2))\n", " #Power factor\n", "pf = math.cos(phi)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)power input is \",round(Pi,2),\"W\"\n", "print \"\\n (b)power factor is \",round(pf,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)power input is 12000.0 W\n", "\n", " (b)power factor is 0.87" ] } ], "prompt_number": 14 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 16, page no. 310

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the readings of each wattmeter.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Pi = 12000;# in Watts\n", "pf = 0.6;# power factor\n", "\n", "#calculation:\n", " #If the two wattmeters indicate Pi1 and Pi2 respectively\n", " # Pit = Pi1 + Pi2\n", "Pit = Pi\n", " # Pid = Pi1 - Pi2\n", " #power factor = 0.6 = cos(phi)\n", "phi = math.acos(pf)\n", "Pid = Pit*math.tan(phi)/(3**0.5)\n", " #Hence wattmeter 1 reads\n", "Pi1 = (Pid + Pit)/2\n", " #wattmeter 2 reads\n", "Pi2 = Pit - Pi1\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n reading in each wattameter are \",round(Pi1,2),\"W and \",round(Pi2,2),\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " reading in each wattameter are 10618.8 W and 1381.2 W" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 17, page no. 310

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the input power and (b) the load power factor.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Pi1 = 10000;# in Watts\n", "Pi2 = -3000;# in Watts\n", "\n", "#calculation:\n", " #Total input power\n", "Pi = Pi1 + Pi2\n", "phi = math.atan((Pi1 - Pi2)*(3**0.5)/(Pi1 + Pi2))\n", " #Power factor\n", "pf = math.cos(phi)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)power input is \",round(Pi,2),\"W\"\n", "print \"\\n (b)power factor is \",round(pf,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)power input is 7000.0 W\n", "\n", " (b)power factor is 0.3" ] } ], "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 18, page no. 311

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate for each connection the readings on each of two wattmeters connected to measure the power by the two-wattmeter method.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R = 8; # in ohms\n", "XL = 8; # in ohms\n", "VL = 415; # in Volts\n", "\n", "#calculation:\n", "#For a star connection:\n", "#IL = Ip\n", "#VL = Vp*(3**0.5)\n", "VLs = VL\n", "Vps = VLs/(3**0.5)\n", "#Impedance per phase,\n", "Zp = (R*R + XL*XL)**0.5\n", "Ips = Vps/Zp\n", "ILs = Ips\n", "#Power dissipated, P = VL*IL*(3**0.5)*cos(phi) or P = 3*Ip*Ip*Rp)\n", "pf = R/Zp\n", "Ps = VLs*ILs*(3**0.5)*pf\n", "#If wattmeter readings are P1 and P2 then P1 + P2 = Pst\n", "Pst = Ps\n", "# Pid = Pi1 - Pi2\n", "phi = math.acos(pf)\n", "Psd = Pst*math.tan(phi)/(3**0.5)\n", "#Hence wattmeter 1 reads\n", "Ps1 = (Psd + Pst)/2\n", "#wattmeter 2 reads\n", "Ps2 = Pst - Ps1\n", "\n", "#For a delta connection:\n", "#VL = Vp\n", "#IL = Ip*(3**0.5)\n", "VLd = VL\n", "Vpd = VLd\n", "Ipd = Vpd/Zp\n", "ILd = Ipd*(3**0.5)\n", "#Power dissipated, P = VL*IL*(3**0.5)*cos(phi) or P = 3*Ip*Ip*Rp)\n", "Pd = VLd*ILd*(3**0.5)*pf\n", "#If wattmeter readings are P1 and P2 then P1 + P2 = Pdt\n", "Pdt = Pd\n", "# Pid = Pi1 - Pi2\n", "Pdd = Pdt*math.tan(phi)/(3**0.5)\n", "#Hence wattmeter 1 reads\n", "Pd1 = (Pdd + Pdt)/2\n", "#wattmeter 2 reads\n", "Pd2 = Pdt - Pd1\n", "\n", "#results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"(a)When the coils are star-connected the wattmeter readings are\", round(Ps1,2),\"W and \",round(Ps2,2),\"W\"\n", "print \"(b)When the coils are delta-connected the wattmeter readings are are\", round(Pd1,2),\"W and\", round(Pd2,2),\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "(a)When the coils are star-connected the wattmeter readings are 8489.35 W and 2274.71 W\n", "(b)When the coils are delta-connected the wattmeter readings are are 25468.05 W and 6824.14 W" ] } ], "prompt_number": 17 } ], "metadata": {} } ] }