{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 16: Single-phase parallel a.c. circuits

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 239

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate (a) the current in each branch,\n", "#(b) the supply current, (c) the circuit phase angle,\n", "#(d) the circuit impedance, and (e) the power consumed\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R = 20;# in Ohms\n", "L = 2.387E-3;# in Henry\n", "V = 60;# in Volts\n", "f = 1000;# in Hz\n", "\n", "#calculation:\n", "IR = V/R\n", "XL = 2*math.pi*f*L\n", "IL = V/XL\n", "I = (IR**2 + IL**2)**0.5\n", "phi = math.atan(IL/IR)\n", "phid = phi*180/math.pi\n", "Z = V/I\n", "P = V*I*math.cos(phi)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Current through resistor is \",round(IR,2),\" A and current through Inductor is \",round( IL,2),\" A\"\n", "print \"\\n (b)current, I = \",round(I,2),\" A \"\n", "print \"\\n (c)phase angle = \",round(phid,2),\"deg lagging\"\n", "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n", "print \"\\n (e)Power consumed = \",round(P,2),\" Watt \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Current through resistor is 3.0 A and current through Inductor is 4.0 A\n", "\n", " (b)current, I = 5.0 A \n", "\n", " (c)phase angle = 53.13 deg lagging\n", "\n", " (d)Impedance Z = 12.0 Ohm \n", "\n", " (e)Power consumed = 180.0 Watt " ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 240

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate (a) the current in each branch, (b) the supply current,\n", "#(c) the circuit phase angle, (d) the circuit impedance, \n", "#(e) the power dissipated, and (f) the apparent power.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R = 80;# in Ohms\n", "C = 30E-6;# in Farads\n", "V = 240;# in Volts\n", "f = 50;# in Hz\n", "\n", "#calculation:\n", "IR = V/R\n", "Xc = 1/(2*math.pi*f*C)\n", "Ic = V/Xc\n", "I = (IR**2 + Ic**2)**0.5\n", "phi = math.atan(Ic/IR)\n", "phid = phi*180/math.pi\n", "Z = V/I\n", "P = V*I*math.cos(phi)\n", "S = V*I\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Current through resistor is \",round(IR,2),\" A and current through capacitor is \",round( Ic,2),\" A\"\n", "print \"\\n (b)current, I = \",round(I,2),\" A \"\n", "print \"\\n (c)phase angle = \",round(phid,2),\"deg leading\"\n", "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n", "print \"\\n (e)Power consumed = \",round(P,2),\" Watt \"\n", "print \"\\n (f)apparent Power = \",round(S,2),\" VA \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Current through resistor is 3.0 A and current through capacitor is 2.26 A\n", "\n", " (b)current, I = 3.76 A \n", "\n", " (c)phase angle = 37.02 deg leading\n", "\n", " (d)Impedance Z = 63.88 Ohm \n", "\n", " (e)Power consumed = 720.0 Watt \n", "\n", " (f)apparent Power = 901.72 VA " ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 241

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the values of C and R.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "pf = 0.6;# power factor\n", "V = 120;# in Volts\n", "f = 200;# in Hz\n", "I = 2;# in Amperes\n", "\n", "#calculation:\n", "phi = math.acos(pf)\n", "phid = phi*180/math.pi\n", "IR = I*math.cos(phi)\n", "Ic = I*math.sin(phi)\n", "R = V/IR\n", "C = Ic/(2*math.pi*f*V)\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Resistance R = \",round(R,2),\" Ohm \"\n", "print \"\\n (b)Capacitance,C = \",round((C/1E-6),2),\" uF \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Resistance R = 100.0 Ohm \n", "\n", " (b)Capacitance,C = 10.61 uF " ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 242

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the branch currents, \n", "#(b) the supply current and its phase angle, \n", "#(c) the circuit impedance, and (d) the power consumed.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C = 25E-6;# in Farads\n", "L = 120E-3;# in Henry\n", "V = 100;# in Volts\n", "f = 50;# in Hz\n", "\n", "#calculation:\n", "XL = 2*math.pi*f*L\n", "IL = V/XL\n", "Xc = 1/(2*math.pi*f*C)\n", "Ic = V/Xc\n", " #IL and Ic are anti-phase. Hence supply current,\n", "I = IL - Ic\n", " #the current lags the supply voltage V by 90\u00c2\u00b0\n", "phi = math.pi/2\n", "phid = phi*180/math.pi\n", "Z = V/I\n", "P = V*I*math.cos(phi)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Current through Inductor is \",round(IL,2),\" A and current through capacitor is \",round( Ic,2),\" A\"\n", "print \"\\n (b)current, I = \",round(I,2),\" A \"\n", "print \"\\n (c)phase angle = \",round(phid,2),\"deg lagging\"\n", "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n", "print \"\\n (e)Power consumed = \",round(P,2),\" Watt \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Current through Inductor is 2.65 A and current through capacitor is 0.79 A\n", "\n", " (b)current, I = 1.87 A \n", "\n", " (c)phase angle = 90.0 deg lagging\n", "\n", " (d)Impedance Z = 53.56 Ohm \n", "\n", " (e)Power consumed = 0.0 Watt " ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 242

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the branch currents, \n", "#(b) the supply current and its phase angle, \n", "#(c) the circuit impedance, and (d) the power consumed.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C = 25E-6;# in Farads\n", "L = 120E-3;# in Henry\n", "V = 100;# in Volts\n", "f = 150;# in Hz\n", "\n", "#calculation:\n", "XL = 2*math.pi*f*L\n", "IL = V/XL\n", "Xc = 1/(2*math.pi*f*C)\n", "Ic = V/Xc\n", " #IL and Ic are anti-phase. Hence supply current,\n", "I = Ic - IL\n", " #the current leads the supply voltage V by 90\u00c2\u00b0\n", "phi = math.pi/2\n", "phid = phi*180/math.pi\n", "Z = V/I\n", "P = V*I*math.cos(phi)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Current through Inductor is \",round(IL,2),\" A and current through capacitor is \",round( Ic,2),\" A\"\n", "print \"\\n (b)current, I = \",round(I,2),\" A \"\n", "print \"\\n (c)phase angle = \",round(phid,2),\"deg leading\"\n", "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n", "print \"\\n (e)Power consumed = \",round(P,2),\" Watt \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Current through Inductor is 0.88 A and current through capacitor is 2.36 A\n", "\n", " (b)current, I = 1.47 A \n", "\n", " (c)phase angle = 90.0 deg leading\n", "\n", " (d)Impedance Z = 67.93 Ohm \n", "\n", " (e)Power consumed = 0.0 Watt " ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 244

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate (a) the current in the coil and its phase angle,\n", "#(b) the current in the capacitor and its phase angle,\n", "#(c) the supply current and its phase angle,\n", "#(d) the circuit impedance, \n", "#(e) the power consumed, \n", "#(f) the apparent power, and \n", "#(g) the reactive power.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C = 30E-6;# in Farads\n", "R = 40;# in Ohms\n", "L = 159.2E-3;# in Henry\n", "V = 240;# in Volts\n", "f = 50;# in Hz\n", "\n", "#calculation:\n", "XL = 2*math.pi*f*L\n", "Z1 = (R**2 + XL**2)**0.5\n", "ILR = V/Z1\n", "phi1 = math.atan(XL/R)\n", "phi1d = phi1*180/math.pi\n", "Xc = 1/(2*math.pi*f*C)\n", "Ic = V/Xc\n", "phi2 = math.pi/2\n", "phi2d = phi2*180/math.pi\n", "Ih = ILR*math.cos(phi1) + Ic*math.cos(phi2)\n", "Iv = -1*ILR*math.sin(phi1) + Ic*math.sin(phi2)\n", "I = (Ih**2 + Iv**2)**0.5\n", "phi = math.atan(abs(Iv)/Ih)\n", "Z = V/I\n", "P = V*I*math.cos(phi)\n", "phid = phi*180/math.pi\n", "S = V*I\n", "Q = V*I*math.sin(phi)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Current through coil is \",round(ILR,2),\" A and lagged by phase angle is \",round(phi1d,2),\"deg\"\n", "print \"\\n (b)Current through capacitor is \",round(Ic,2),\" A and lead by phase angle is \",round(phi2d,2),\"deg\"\n", "print \"\\n (c)supply Current is \",round(I,2),\" A and lagged by phase angle is \",round(phid,2),\"deg\"\n", "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n", "print \"\\n (e)Power consumed = \",round(P,2),\" Watt \"\n", "print \"\\n (f)apparent Power = \",round(S,2),\" VA \"\n", "print \"\\n (g)reactive Power = \",round(Q,2),\" var \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Current through coil is 3.75 A and lagged by phase angle is 51.35 deg\n", "\n", " (b)Current through capacitor is 2.26 A and lead by phase angle is 90.0 deg\n", "\n", " (c)supply Current is 2.43 A and lagged by phase angle is 15.85 deg\n", "\n", " (d)Impedance Z = 98.64 Ohm \n", "\n", " (e)Power consumed = 561.76 Watt \n", "\n", " (f)apparent Power = 583.97 VA \n", "\n", " (g)reactive Power = 159.53 var " ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 246

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the current in the coil, and (b) the current in the capacitor. \n", "#(c) Measure the supply current and its phase angle (d) the circuit impedance and (e) the power consumed.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C = 0.02E-6;# in Farads\n", "R = 3000;# in Ohms\n", "L = 120E-3;# in Henry\n", "V = 40;# in Volts\n", "f = 5000;# in Hz\n", "\n", "#calculation:\n", "XL = 2*math.pi*f*L\n", "Z1 = (R**2 + XL**2)**0.5\n", "ILR = V/Z1\n", "phi1 = math.atan(XL/R)\n", "phi1d = phi1*180/math.pi\n", "Xc = 1/(2*math.pi*f*C)\n", "Ic = V/Xc\n", "phi2 = math.pi/2\n", "phi2d = phi2*180/math.pi\n", "Ih = ILR*math.cos(phi1) + Ic*math.cos(phi2)\n", "Iv = -1*ILR*math.sin(phi1) + Ic*math.sin(phi2)\n", "I = (Ih**2 + Iv**2)**0.5\n", "phi = math.atan((Iv)/Ih)\n", "phid = phi*180/math.pi\n", "Z = V/I\n", "P = V*I*math.cos(phi)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Current through coil is \",round(ILR*1000,2),\"mA and lagged by phase angle is \",round(phi1d,1),\"deg\"\n", "print \"\\n (b)Current through capacitor is \",round(Ic*1000,2),\"mA and lead by phase angle is \",round(phi2d,2),\"deg\"\n", "print \"\\n (c)supply Current is \",round(I*1000,1),\"mA and leaded by phase angle is \",round(phid,2),\"deg\"\n", "print \"\\n (d)Impedance Z = \",round(Z/1000,3),\"KOhm \"\n", "print \"\\n (e)Power consumed = \",round(P*1000,1),\"mWatt \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Current through coil is 8.3 mA and lagged by phase angle is 51.5 deg\n", "\n", " (b)Current through capacitor is 25.13 mA and lead by phase angle is 90.0 deg\n", "\n", " (c)supply Current is 19.3 mA and leaded by phase angle is 74.5 deg\n", "\n", " (d)Impedance Z = 2.068 KOhm \n", "\n", " (e)Power consumed = 206.8 mWatt " ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8, page no. 249

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the resonant frequency of the circuit and \n", "#(b) the current circulating in the capacitor and inductance at resonance.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C = 40E-6;# in Farads\n", "R = 0;# in Ohms\n", "L = 150E-3;# in Henry\n", "V = 50;# in Volts\n", "\n", "#calculation:\n", "fr = ((1/(L*C) - R*R/(L*L))**0.5)/(2*math.pi)\n", "Xc = 1/(2*math.pi*fr*C)\n", "Icirc = V/Xc\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Parallel resonant frequency, fr = \",round(fr,2),\" Hz \"\n", "print \"\\n (b)Current circulating in L and C at resonance = \",round(Icirc,2),\" A \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Parallel resonant frequency, fr = 64.97 Hz \n", "\n", " (b)Current circulating in L and C at resonance = 0.82 A " ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 9, page no. 250

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate (a) the resonant frequency, \n", "#(b) the dynamic resistance, \n", "#(c) the current at resonance and \n", "#(d) the circuit Q-factor at resonanc\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C = 20E-6;# in Farads\n", "R = 60;# in Ohms\n", "L = 200E-3;# in Henry\n", "V = 20;# in Volts\n", "\n", "#calculation:\n", "fr = ((1/(L*C) - R*R/(L*L))**0.5)/(2*math.pi)\n", "Rd = L/(R*C)\n", "Ir = V/Rd\n", "Q = 2*math.pi*fr*L/R\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Parallel resonant frequency, fr = \",round(fr,2),\" Hz \"\n", "print \"\\n (b)the dynamic resistance,RD = \",round(Rd,2),\" ohm \"\n", "print \"\\n (c)Current at resonance = \",round(Ir,2),\" A \"\n", "print \"\\n (d)Q-factor = \",round(Q,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Parallel resonant frequency, fr = 63.66 Hz \n", "\n", " (b)the dynamic resistance,RD = 166.67 ohm \n", "\n", " (c)Current at resonance = 0.12 A \n", "\n", " (d)Q-factor = 1.33" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 10, page no. 251

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine for the condition when the supply current is a minimum:\n", "#(a) the capacitance of the capacitor,\n", "#(b) the dynamic resistance, \n", "#(c) the supply current, and \n", "#(d) the Q-factor.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "fr = 5000;# in ohm\n", "R = 800;# in Ohms\n", "L = 100E-3;# in Henry\n", "V = 12;# in Volts\n", "\n", "#calculation:\n", "C = 1/(L*((2*math.pi*fr)**2 + R*R/(L*L)))\n", "Rd = L/(R*C)\n", "Ir = V/Rd\n", "Q = 2*math.pi*fr*L/R\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)capacitance, C = \",round((C/1E-9),2),\" nF \"\n", "print \"\\n (b)the dynamic resistance,RD = \",round(Rd,2),\" ohm \"\n", "print \"\\n (c)Current at resonance = \",round((Ir/1E-3),2),\" mA \"\n", "print \"\\n (d)Q-factor = \",round(Q,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)capacitance, C = 9.52 nF \n", "\n", " (b)the dynamic resistance,RD = 13137.01 ohm \n", "\n", " (c)Current at resonance = 0.91 mA \n", "\n", " (d)Q-factor = 3.93" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 11, page no. 252

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the currenttaken by a capacitor connected in parallel with the motor to correct the power factor to unity, and \n", "#(b) the value of the supply current after power factor correction.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "f = 50;# in ohm\n", "V = 240;# in Volts\n", "pf = 0.6;# power factor\n", "Im = 50;# in amperes\n", "\n", "#calculation:\n", "phi = math.acos(pf)\n", "phid = phi*180/math.pi\n", "Ic = Im*math.sin(phi)\n", "I = Im*math.cos(phi)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)the capacitor current Ic must be \",round(Ic,2),\" A for the power factor to be unity. \"\n", "print \"\\n (b)Supply current I = \",round(I,2),\" A \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)the capacitor current Ic must be 40.0 A for the power factor to be unity. \n", "\n", " (b)Supply current I = 30.0 A " ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 12, page no. 253

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the current taken by the motor, \n", "#(b) the supply current after power factor correction, \n", "#(c) the current taken by the capacitor,\n", "#(d) the capacitance of the capacitor, and \n", "#(e) the kvar rating of the capacitor.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Pout = 4800;# in Watt\n", "eff = 0.8# effficiency\n", "f = 50;# in ohm\n", "V = 240;# in Volts\n", "pf1 = 0.625;# power factor\n", "pf2 = 0.95;# power factor\n", "\n", "#calculation:\n", "Pin = Pout/eff\n", "Im = Pin/(V*pf1)\n", "phi1 = math.acos(pf1)\n", "phi1d = phi1*180/math.pi\n", "phi2 = math.acos(pf2)\n", "phi2d = phi2*180/math.pi\n", "Imh = Im*math.cos(phi1)\n", " #Ih = I*cos(phi2)\n", "Ih = Imh\n", "I = Ih/math.cos(phi2)\n", "Imv = Im*math.sin(phi1)\n", "Iv = I*math.sin(phi2)\n", "Ic = Imv - Iv\n", "C = Ic/(2*math.pi*f*V)\n", "kvar = V*Ic/1000\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)current taken by the motor, Im = \",round(Im,2),\" A\"\n", "print \"\\n (b)supply current after p.f. correction, I = \",round(I,2),\" A \"\n", "print \"\\n (c)magnitude of the capacitor current Ic = \",round(Ic,0),\" A\"\n", "print \"\\n (d)capacitance, C = \",round((C/1E-6),0),\" uF \"\n", "print \"\\n (d)kvar rating of the capacitor = \",round(kvar,2),\" kvar \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)current taken by the motor, Im = 40.0 A\n", "\n", " (b)supply current after p.f. correction, I = 26.32 A \n", "\n", " (c)magnitude of the capacitor current Ic = 23.0 A\n", "\n", " (d)capacitance, C = 305.0 uF \n", "\n", " (d)kvar rating of the capacitor = 5.52 kvar " ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 13, page no. 254

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine, for the lamps and motor, (a) the total current, (b) the overall power factor and \n", "#(c) the total power. (d) Find the value of the static capacitor to improve the overall power factor to 0.975 lagging.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "S = 3000;# in VA\n", "f = 50;# in ohm\n", "V = 250;# in Volts\n", "Iil = 10;# in Amperes\n", "Ifl = 8;# in Amperes\n", "pfil = 1; # power factor\n", "pffl = 0.7;# power factor\n", "pfm = 0.8;# power factor\n", "pf0 = 0.975;# power factor\n", "\n", "#calculation:\n", "phiil = math.acos(pfil)\n", "phiild = phiil*180/math.pi\n", "phifl = math.acos(pffl)\n", "phifld = phifl*180/math.pi\n", "phim = math.acos(pfm)\n", "phimd = phim*180/math.pi\n", "phi0 = math.acos(pf0)\n", "phi0d = phi0*180/math.pi\n", "Im = S/V\n", "Ih = Iil*math.cos(phiil) + Ifl*math.cos(phifl) + Im*math.cos(phim)\n", "Iv = Iil*math.sin(phiil) - Ifl*math.sin(phifl) - Im*math.sin(phim)\n", "Il = (Ih**2 + Iv**2)**0.5\n", "phi = math.atan(abs(Iv)/Ih)\n", "phid = phi*180/math.pi\n", "pf = math.cos(phi)\n", "P = V*Il*pf\n", "I = Il*math.cos(phi)/math.cos(phi0)\n", "Ic = Il*math.sin(phi) - I*math.sin(phi0)\n", "C = Ic/(2*math.pi*f*V)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)total current, Il = \",round(Il,2),\" A\"\n", "print \"\\n (b)Power factor = \",round(pf,2),\"lagging\"\n", "print \"\\n (c)Total power, P = \",round(P/1000,2),\"KWatt\"\n", "print \"\\n (d)capacitance, C = \",round((C/1E-6),2),\"uF \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)total current, Il = 28.32 A\n", "\n", " (b)Power factor = 0.89 lagging\n", "\n", " (c)Total power, P = 6.3 KWatt\n", "\n", " (d)capacitance, C = 91.29 uF " ] } ], "prompt_number": 10 } ], "metadata": {} } ] }