{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 14: Alternating voltages and currents

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 195

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find the periodic time for 50 Hz and 20kHz frequencies.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "f1 = 50;# in Hz\n", "f2 = 20000;# in Hz\n", "\n", "#calculation:\n", "T1 = 1/f1\n", "T2 = 1/f2\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a) Periodic time T = \",T1,\" secs\\n\"\n", "print \"\\n (b) Periodic time T = \",(T2/1E-6),\" usecs\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a) Periodic time T = 0.02 secs\n", "\n", "\n", " (b) Periodic time T = 50.0 usecs\n", "\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 195

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find the frequencies for 4ms and 4us periodic times\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "T1 = 0.004;# in secs\n", "T2 = 4E-6;# in secs\n", "\n", "#calculation:\n", "f1 = 1/T1\n", "f2 = 1/T2\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a) Frequency f = \",f1,\" Hz\\n\"\n", "print \"\\n (b) Frequency f = \",(f2/1E6),\" MHz\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a) Frequency f = 250.0 Hz\n", "\n", "\n", " (b) Frequency f = 0.25 MHz\n", "\n" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 195

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find the frequency of an alternating current which completes 5 cycles in 8 ms\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "T = (8E-3)/5;# in secs\n", "\n", "#calculation:\n", "f = 1/T\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n Frequency f = \",f,\" Hz\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " Frequency f = 625.0 Hz" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 196

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine for each: (i) frequency \n", "#(ii) average value over half a cycle \n", "#(iii) rms value\n", "#(iv) form factor and \n", "#(v) peak factor\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Ta = 0.02;# Time for 1 complete cycle in secs\n", "Vamax = 200;# in volts\n", "Va1 = 25;# in volts\n", "Va2 = 75;# in volts\n", "Va3 = 125;# in volts\n", "Va4 = 175;# in volts\n", "Tb = 0.016;# Time for 1 complete cycle in secs\n", "Ibmax = 10;# in Amperes\n", "\n", "#calculation:\n", "#for Triangular waveform (Figure 14.5(a))\n", "fa = 1/Ta\n", "Aaw = Ta*Vamax/4\n", "Vaavg = Aaw*2/Ta\n", "Varms = (((Va1**2) + (Va2**2) + (Va3**2) + (Va4**2))/4)**0.5\n", "#Note that the greater the number of intervals chosen, the greater the accuracy of the result\n", "Ffa = Varms/Vaavg\n", "Pfa = Vamax/Varms\n", "\n", "#for Rectangular waveform (Figure 14.5(b))\n", "fb = 1/Tb\n", "Abw = Tb*Ibmax/2\n", "Ibavg = Abw*2/Tb\n", "Ibrms = 10\n", "Ffb = Ibrms/Ibavg\n", "Pfb = Ibmax/Ibrms\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a1)Frequency f = \",fa,\" Hz\\n\"\n", "print \"\\n (a2)average value over half a cycle = \",Vaavg,\" V\\n\"\n", "print \"\\n (a3)rms value = \",round(Varms,2),\" V\\n\"\n", "print \"\\n (a4)Form factor = \",round(Ffa,2),\"\\n\"\n", "print \"\\n (a5)Peak factor = \",round(Pfa,2),\"\\n\"\n", "print \"\\n (b1)Frequency f = \",fb,\" Hz\\n\"\n", "print \"\\n (b2)average value over half a cycle = \",Ibavg,\" A\\n\"\n", "print \"\\n (b3)rms value = \",Ibrms,\" A\\n\"\n", "print \"\\n (b4)Form factor = \",Ffb,\"\\n\"\n", "print \"\\n (b5)Peak factor = \",Pfb,\"\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a1)Frequency f = 50.0 Hz\n", "\n", "\n", " (a2)average value over half a cycle = 100.0 V\n", "\n", "\n", " (a3)rms value = 114.56 V\n", "\n", "\n", " (a4)Form factor = 1.15 \n", "\n", "\n", " (a5)Peak factor = 1.75 \n", "\n", "\n", " (b1)Frequency f = 62.5 Hz\n", "\n", "\n", " (b2)average value over half a cycle = 10.0 A\n", "\n", "\n", " (b3)rms value = 10 A\n", "\n", "\n", " (b4)Form factor = 1.0 \n", "\n", "\n", " (b5)Peak factor = 1.0 " ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 198

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find (a) the frequency of the supply, \n", "#(b) the instantaneous values of current after 1.25 ms and 3.8 ms, (c) the peak or maximum value,\n", "#(d) the mean or average value, and (e) the rms value of the waveform.\n", "from __future__ import division\n", "import math\n", "import numpy \n", "from numpy import mean, sqrt, arange\n", "#initializing the variables:\n", "Thalf = 5; #in ms\n", "Ta = 0.02;# Time for 1 complete cycle in secs\n", "\n", "#calculation:\n", "Tfull = 2*Thalf/1000 # in sec\n", "f = 1/Tfull\n", "A=[3, 10, 19, 30, 49, 63, 73, 72, 30, 2]\n", "Iinst125 = 19\n", "Iinst38 = 70\n", "sq = 0\n", "Ipeak = 76\n", "#B=arange(A)\n", "Imean = (0.5*1E-3)*numpy.mean(A)*10/(5*1E-3)\n", "for h in range(10):\n", " sq = sq + A[h]**2\n", "\n", "Irms = sqrt(sq/10)\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Frequency f = \",f,\" Hz\\n\"\n", "print \"\\n (b)Instantaneous value of current after 1.25 ms =\",Iinst125,\"A \"\n", "print \"and Instantaneous value of current after 3.8 ms\", Iinst38,\"A\\n\"\n", "print \"\\n (c)Peak or maximum value = \",Ipeak,\" A\\n\"\n", "print \"\\n (d)Mean or average value = \",round(Imean,2),\"A\\n\"\n", "print \"\\n (e)rms value = \",round(Irms,1),\"A\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Frequency f = 100.0 Hz\n", "\n", "\n", " (b)Instantaneous value of current after 1.25 ms = 19 A and Instantaneous value of current after 3.8 ms 70 A\n", "\n", "\n", " (c)Peak or maximum value = 76 A\n", "\n", "\n", " (d)Mean or average value = 35.1 A\n", "\n", "\n", " (e)rms value = 43.8 A" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 200

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#sinusoidal current has maximum value of 20 A.Calculate its rms value. \n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Imax = 20;# in Amperes\n", "\n", "#calculation:\n", "#for a sine wave\n", "Irms = Imax/(2**0.5)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n Rms value = \",round(Irms,2),\" A\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " Rms value = 14.14 A" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 200

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#main supply is of 240V.Determine its peak and mean values.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Vrms = 240;# in Volts\n", "\n", "#calculation:\n", "#for a sine wave\n", "Vmax = Vrms*(2**0.5)\n", "Vmean = 0.637*Vmax\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n peak value = \",round(Vmax,2),\" V\\n\"\n", "print \"\\n mean value = \",round(Vmean,2),\" V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " peak value = 339.41 V\n", "\n", "\n", " mean value = 216.2 V" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8, page no. 200

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine its maximum value and its rms value\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Vmean = 150;# in Volts\n", "\n", "#calculation:\n", "#for a sine wave\n", "Vmax = Vmean/0.637\n", "Vrms = 0.707*Vmax\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n peak value = \",round(Vmax,2),\" V\\n\"\n", "print \"\\n rms value = \",round(Vrms,2),\" V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " peak value = 235.48 V\n", "\n", "\n", " rms value = 166.48 V" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 9, page no. 201

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find (a) the rms voltage, (b) the frequency and (c) the instantaneous value of voltage when t = 4 ms\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Vmax = 282.8;# in Volts\n", "w = 314;# in rad/sec\n", "t = 0.004;# in sec\n", "\n", "#calculation:\n", "#for a sine wave\n", "Vrms = 0.707*Vmax\n", "f = w/(2*math.pi)\n", "v = Vmax*math.sin(w*t)\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)rms value = \",round(Vrms,2),\" V\\n\"\n", "print \"\\n (b)frequency f = \",round(f,2),\" Hz\\n\"\n", "print \"\\n (c)instantaneous value of voltage at 4 ms = \",round(v,2),\" V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)rms value = 199.94 V\n", "\n", "\n", " (b)frequency f = 49.97 Hz\n", "\n", "\n", " (c)instantaneous value of voltage at 4 ms = 268.9 V" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 10, page no. 202

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find (a) the amplitude, (b) the peak-to-peak value, \n", "#(c) the rms value, (d) the periodic time, \n", "#(e) the frequency, and (f) the phase angle (in degrees and minutes) relative to 75 sin 200(pi*t)\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Vmax = 75;# in Volts\n", "w = 200*math.pi;# in rad/sec\n", "t = 0.004;# in sec\n", "phi = 0.25;# in radians\n", "\n", "#calculation:\n", "#for a sine wave\n", "Vptp = 2*Vmax\n", "Vrms = 0.707*Vmax\n", "f = w/(2*math.pi)\n", "T = 1/f\n", "v = Vmax*math.sin(w*t)\n", "phid = phi*180/math.pi\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a) Amplitude, or peak value = \",Vmax,\" V\\n\"\n", "print \"\\n (b) Peak-to-peak value = \",Vptp,\" V\\n\"\n", "print \"\\n (c)rms value = \",Vrms,\" V\\n\"\n", "print \"\\n (d)periodic time, T = \",T,\" sec\\n\"\n", "print \"\\n (e)frequency f = \",f,\" Hz\\n\"\n", "print \"\\n (f)phase angle = \",round(phid,2),\"deg lagging\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a) Amplitude, or peak value = 75 V\n", "\n", "\n", " (b) Peak-to-peak value = 150 V\n", "\n", "\n", " (c)rms value = 53.025 V\n", "\n", "\n", " (d)periodic time, T = 0.01 sec\n", "\n", "\n", " (e)frequency f = 100.0 Hz\n", "\n", "\n", " (f)phase angle = 14.32 deg lagging\n" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 11, page no. 202

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Express the instantaneous voltage in the form v = Vm*sin(wt +- phi)\t\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Vmax = 40;# in Volts\n", "T = 0.01;# in sec\n", "v = -20;# when t = 0sec, in volts\n", "t = 0;# in secs\n", "\n", "#calculation:\n", "#for a sine wave\n", "w = 2*math.pi/T\n", "phir = math.asin(v/Vmax)\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n instantaneous voltage v = \", Vmax,\" sin(\",round(w,2),\"t\",round(phir,2),\") V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " instantaneous voltage v = 40 sin( 628.32 t -0.52 ) V" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 12, page no. 203

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find:\n", "#(a) the peak value, the periodic time, the frequency and phase angle relative to 120 sin 100*pi*t\n", "#(b) the value of the current when t = 0\n", "#(c) the value of the current when t = 8 ms\n", "#(d) the time when the current first reaches 60 A, and\n", "#(e) the time when the current is first a maximum\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Imax = 120;# in Amperes\n", "w = 100*math.pi;# in rad/sec\n", "phi = 0.36;# in rad\n", "t1 = 0;# in secs\n", "t2 = 0.008;# in secs\n", "i = 60;# in amperes\n", "\n", "#calculation:\n", "#for a sine wave\n", "f = w/(2*math.pi)\n", "T = 1/f\n", "phid = phi*180/math.pi\n", "i0 = Imax*math.sin((w*t1)+phi)\n", "i8 = Imax*math.sin((w*t2)+phi) \n", "ti = (math.asin(i/Imax) - phi)/w\n", "tm1 = (math.asin(Imax/Imax) - phi)/w\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Peak value = \", Imax,\" A, Periodic time T = \", T,\" sec, \"\n", "print \" Frequency, f = \", f,\" Hz Phase angle = \",round(phid,2),\"deg leading\\n\"\n", "print \"\\n (b) When t = 0, i = \",round(i0,2),\" A\\n\"\n", "print \"\\n (c)When t = 8 ms = \", round(i8,2),\" A\\n\"\n", "print \"\\n (d)When i is 60 A, then time t = \",round((ti/1E-3),2),\" ms\\n\"\n", "print \"\\n (e)When the current is a maximum, time, t = \", round((tm1/1E-3),2),\" ms\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Peak value = 120 A, Periodic time T = 0.02 sec, \n", " Frequency, f = 50.0 Hz Phase angle = 20.63 deg leading\n", "\n", "\n", " (b) When t = 0, i = 42.27 A\n", "\n", "\n", " (c)When t = 8 ms = 31.81 A\n", "\n", "\n", " (d)When i is 60 A, then time t = 0.52 ms\n", "\n", "\n", " (e)When the current is a maximum, time, t = 3.85 ms\n", "\n" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 13, page no. 204

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#obtain a sinusoidal expression for i1 + i2\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "i1max = 20;# in Amperes\n", "i2max = 10;# in Amperes\n", "phi1 = 0;# in rad\n", "phi2 = math.pi/3;# in rad\n", "\n", "#calculation:\n", "#Ig = i1 + i2\n", "Igmax = 26.5\n", "phiIg = 19*math.pi/180\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n Current Ig = i1 + i2 =\", Igmax,\"sin(wt + \",round(phiIg,3),\") Amps\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " Current Ig = i1 + i2 = 26.5 sin(wt + 0.332 ) Amps" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 14, page no. 205

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find, by calculation, a sinusoidal expression to represent v1 + v2\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "V1max = 50;# in volts\n", "V2max = 100;# in volts\n", "phi2 = -1*math.pi/6;# in rad\n", "\n", "#calculation:\n", "#vR2 = v1**2 + v2**2 - 2*v1*v2 cos 150\n", "phidiff = math.pi + phi2\n", "Vrmax = (V1max**2 + V2max**2 - 2*V1max*V2max*math.cos(phidiff))**0.5\n", "#Using the sine rule\n", "phi = math.asin(V2max*math.sin(phidiff)/Vrmax)\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n VR = \",round(Vrmax,2),\"sin(wt - \",round(phi,2),\") V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " VR = 145.47 sin(wt - 0.35 ) V" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 15, page no. 206

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find a sinusoidal expression for \u0005i1 + i2\t of Problem 13, by calculation.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "I1max = 20;# in volts\n", "I2max = 10;# in volts\n", "phi2 = 1*math.pi/3;# in rad\n", "\n", "#calculation:\n", "#iR2 = i1**2 + i2**2 - 2*i1*i2cos150\n", "phidiff = math.pi - phi2\n", "Irmax = (I1max**2 + I2max**2 - 2*I1max*I2max*math.cos(phidiff))**0.5\n", "#Using the sine rule\n", "phi = math.asin(I2max*math.sin(phidiff)/Irmax)\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n IR = \", round(Irmax,2),\"sin(wt + \",round(phi,2),\") V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " IR = 26.46 sin(wt + 0.33 ) V" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }