{
 "metadata": {
  "name": "",
  "signature": "sha256:c6970542ad51432c833f98812d08f1e8865158ee25a859a74fb18804672e045b"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 10: Electrical measuring instruments and measurements</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 1, page no. 116</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "Ia  =  0.040;#  in  Amperes\n",
      "I  =  50;#  in  Amperes\n",
      "ra  =  25;#  in  ohms\n",
      "\n",
      "#calculation:\n",
      "Is  =  I  -  Ia\n",
      "V  =  Ia*ra\n",
      "Rs  =  V/Is\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n    value  of  the  shunt  to  be  connected  in  parallel  =  \",  round((Rs/1E-3),2),\"  mohms\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "    value  of  the  shunt  to  be  connected  in  parallel  =   20.02   mohms"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 116</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "V  =  100;#  in  volts\n",
      "I  =  0.008;#  in  Amperes\n",
      "ra  =  10;#  in  ohms\n",
      "\n",
      "#calculation:\n",
      "Rm  =  (V/I)  -  ra\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  value  of  the  multiplier  to  be  connected  in  series  =  \",  (Rm/1E3),\"  kohms\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  value  of  the  multiplier  to  be  connected  in  series  =   12.49   kohms"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 119</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "fsd  =  200;#  in  volts\n",
      "R1  =  250;#  in  ohms\n",
      "R2  =  2E6;#  in  ohms\n",
      "sensitivity  =  10000;#  in  ohms/V\n",
      "V = 100; # in volts\n",
      "\n",
      "#calculation:\n",
      "Rv  =  sensitivity*fsd\n",
      "Iv  =  V/Rv\n",
      "Pv  =  V*Iv\n",
      "I1  =  V/R1\n",
      "P1  =  V*I1\n",
      "I2  =  V/R2\n",
      "P2  =  V*I2\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  power  dissipated  by  the  voltmeter  =  \",  (Pv/1E-3),\"  mW\\n\"\n",
      "print  \"\\n  (b)the  power  dissipated  by  resistor  250  ohm  =  \",  P1,\"  W\\n\"\n",
      "print  \"\\n  (c)the  power  dissipated  by  resistor  2  Mohm  =  \",  (P2/1E-3),\"  mW\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  power  dissipated  by  the  voltmeter  =   5.0   mW\n",
        "\n",
        "\n",
        "  (b)the  power  dissipated  by  resistor  250  ohm  =   40.0   W\n",
        "\n",
        "\n",
        "  (c)the  power  dissipated  by  resistor  2  Mohm  =   5.0   mW"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 4, page no. 119</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "V  =  10;#  in  volts\n",
      "fsd  =  0.1;#  in  Amperes\n",
      "ra  =  50;#  in  ohms\n",
      "R  =  500;#  in  ohms\n",
      "\n",
      "#calculation:\n",
      "Ie  =  V/R\n",
      "Ia  =  V/(R  +  ra)\n",
      "Pa  =  Ia*Ia*ra\n",
      "PR  =  Ia*Ia*R\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)expected  ammeter  reading  =  \",  (Ie/1E-3),\"  mA\\n\"\n",
      "print  \"\\n  (b)Actual  ammeter  reading  =  \",round((Ia/1E-3),2),\"  mA\\n\"\n",
      "print  \"\\n  (c)Power  dissipated  in  the  ammeter  =  \",round((Pa/1E-3),2),\"  mW\\n\"\n",
      "print  \"\\n  (d)Power  dissipated  in  the  load  resistor  =  \",  round((PR/1E-3),2),\"  mW\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)expected  ammeter  reading  =   20.0   mA\n",
        "\n",
        "\n",
        "  (b)Actual  ammeter  reading  =   18.18   mA\n",
        "\n",
        "\n",
        "  (c)Power  dissipated  in  the  ammeter  =   16.53   mW\n",
        "\n",
        "\n",
        "  (d)Power  dissipated  in  the  load  resistor  =   165.29   mW"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 5, page no. 120</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "fsd  =  100;#  in  volts\n",
      "R1  =  40E3;#  in  ohms\n",
      "R2  =  60E3;#  in  ohms\n",
      "sensitivity  =  1600;#  in  ohms/V\n",
      "\n",
      "#calculation:\n",
      "V1  =  (R1/(R1  +  R2))*fsd\n",
      "Rv  =  fsd*sensitivity\n",
      "Rep  =  R1*Rv/(R1  +  Rv)\n",
      "V1n  =  (Rep/(Rep  +  R2))*fsd\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  value  of  voltage  V1  with  the  voltmeter6  not  connected  =  \",  V1,\"  V\\n\"\n",
      "print  \"\\n  (b)the  voltage  indicated  by  the  voltmeter  when  connected  between  A  and  B  =  \",round(V1n,2),\"  V\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  value  of  voltage  V1  with  the  voltmeter6  not  connected  =   40.0   V\n",
        "\n",
        "\n",
        "  (b)the  voltage  indicated  by  the  voltmeter  when  connected  between  A  and  B  =   34.78   V"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 6, page no. 120</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "I  =  20;#  in  amperes\n",
      "R  =  2;#  in  ohms\n",
      "Rw  =  0.01;#  in  ohms\n",
      "\n",
      "#calculation:\n",
      "PR  =  I*I*R\n",
      "Rt  =  R  +  Rw\n",
      "Pw  =  I*I*Rt\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  power  dissipated  in  the  load  =  \",  PR,\"  W\\n\"\n",
      "print  \"\\n  (b)the  wattmeter  reading.  =  \",Pw,\"  W\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  power  dissipated  in  the  load  =   800   W\n",
        "\n",
        "\n",
        "  (b)the  wattmeter  reading.  =   804.0   W"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 8, page no. 122</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "tc  =  100E-6;#  in  s/cm\n",
      "Vc  =  20;#  in  V/cm\n",
      "w  =  5.2;#  in  cm  (  width  of  one  complete  cycle  )\n",
      "h = 3.6; # in cm ( peak-to-peak height of the display )\n",
      "\n",
      "#calculation:\n",
      "T  =  w*tc\n",
      "f  =  1/T\n",
      "ptpv  =  h*Vc\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  periodic  time,  T  =  \",  (T/1E-3),\"  msec\\n\"\n",
      "print  \"\\n  (b)Frequency,  f  =  \",round(f,2),\"  Hz\\n\"\n",
      "print  \"\\n  (c)the  peak-to-peak  voltage  =  \",ptpv,\"  V\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  periodic  time,  T  =   0.52   msec\n",
        "\n",
        "\n",
        "  (b)Frequency,  f  =   1923.08   Hz\n",
        "\n",
        "\n",
        "  (c)the  peak-to-peak  voltage  =   72.0   V"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 9, page no. 123</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "tc  =  50E-3;#  in  s/cm\n",
      "Vc  =  0.2;#  in  V/cm\n",
      "w  =  3.5;#  in  cm  (  width  of  one  complete  cycle  )\n",
      "h = 3.4; # in cm ( peak-to-peak height of the display )\n",
      "\n",
      "#calculation:\n",
      "T  =  w*tc\n",
      "f  =  1/T\n",
      "ptpv  =  h*Vc\n",
      "\n",
      "#Results  \n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  periodic  time,  T  =  \",  (T/1E-3),\"  msec\\n\"\n",
      "print  \"\\n  (b)Frequency,  f  =  \",round(f,2),\"  Hz\\n\"\n",
      "print  \"\\n  (c)the  peak-to-peak  voltage  =  \",ptpv,\"  V\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  periodic  time,  T  =   175.0   msec\n",
        "\n",
        "\n",
        "  (b)Frequency,  f  =   5.71   Hz\n",
        "\n",
        "\n",
        "  (c)the  peak-to-peak  voltage  =   0.68   V"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 10, page no. 123</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "tc  =  500E-6;#  in  s/cm\n",
      "Vc  =  5;#  in  V/cm\n",
      "w  =  4;#  in  cm  (  width  of  one  complete  cycle  )\n",
      "h = 5; # in cm ( peak-to-peak height of the display )\n",
      "\n",
      "#calculation:\n",
      "T  =  w*tc\n",
      "f  =  1/T\n",
      "ptpv  =  h*Vc\n",
      "Amp  =  ptpv/2\n",
      "Vrms  =  Amp/(2**0.5)\n",
      "\n",
      "#Results  \n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)Frequency,  f  =  \",f,\"  Hz\\n\"\n",
      "print  \"\\n  (b)the  peak-to-peak  voltage  =  \",ptpv,\"  V\\n\"\n",
      "print  \"\\n  (c)Amplitude  =  \",Amp,\"  V\\n\"\n",
      "print  \"\\n  (d)r.m.s  voltage  =  \",round(Vrms,2),\"  V\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)Frequency,  f  =   500.0   Hz\n",
        "\n",
        "\n",
        "  (b)the  peak-to-peak  voltage  =   25   V\n",
        "\n",
        "\n",
        "  (c)Amplitude  =   12.5   V\n",
        "\n",
        "\n",
        "  (d)r.m.s  voltage  =   8.84   V"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 11, page no. 123</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#initializing  the  variables:\n",
      "tc  =  100E-6;#  in  s/cm\n",
      "Vc  =  2;#  in  V/cm\n",
      "w  =  5;#  in  cm  (  width  of  one  complete  cycle  for  both  waveform  )\n",
      "h1 = 2; # in cm ( peak-to-peak height of the display )\n",
      "h2 = 2.5; # in cm ( peak-to-peak height of the display\n",
      "\n",
      "#calculation:\n",
      "T  =  w*tc\n",
      "f  =  1/T\n",
      "ptpv1  =  h1*Vc\n",
      "Vrms1  =  ptpv1/(2**0.5)\n",
      "ptpv2  =  h2*Vc\n",
      "Vrms2  =  ptpv2/(2**0.5)\n",
      "phi  =  0.5*360/w\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)Frequency,  f  =  \",f,\"  Hz\\n\"\n",
      "print  \"\\n  (b1)r.m.s  voltage  of  1st  waveform  =  \",round(Vrms1,2),\"  V\\n\"\n",
      "print  \"\\n  (b2)r.m.s  voltage  of  2nd  waveform  =  \",round(Vrms2,2),\"  V\\n\"\n",
      "print  \"\\n  (c)Phase  difference  =  \",phi,\"deg\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)Frequency,  f  =   2000.0   Hz\n",
        "\n",
        "\n",
        "  (b1)r.m.s  voltage  of  1st  waveform  =   2.83   V\n",
        "\n",
        "\n",
        "  (b2)r.m.s  voltage  of  2nd  waveform  =   3.54   V\n",
        "\n",
        "\n",
        "  (c)Phase  difference  =   36.0 deg"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 12, page no. 127</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "rP1  =  3;#  ratio  of  two  powers\n",
      "rP2  =  20;#  ratio  of  two  powers\n",
      "rP3  =  400;#  ratio  of  two  powers\n",
      "rP4  =  1/20;#  ratio  of  two  powers\n",
      "\n",
      "#calculation:\n",
      "X1  =  10*(1/2.303)*math.log(3)\n",
      "X2  =  10*(1/2.303)*math.log(20)\n",
      "X3  =  10*(1/2.303)*math.log(400)\n",
      "X4  =  10*(1/2.303)*math.log(1/20)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)decibel  power  ratio  for  power  ratio  3  =  \",round(X1,2),\"  dB\\n\"\n",
      "print  \"\\n  (b)decibel  power  ratio  for  power  ratio  20  =  \",round(X2,2),\"  dB\\n\"\n",
      "print  \"\\n  (c)decibel  power  ratio  for  power  ratio  400  =  \",round(X3,2),\"  dB\\n\"\n",
      "print  \"\\n  (d)decibel  power  ratio  for  power  ratio  1/20  =  \",round(X4,2),\"  dB\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)decibel  power  ratio  for  power  ratio  3  =   4.77   dB\n",
        "\n",
        "\n",
        "  (b)decibel  power  ratio  for  power  ratio  20  =   13.01   dB\n",
        "\n",
        "\n",
        "  (c)decibel  power  ratio  for  power  ratio  400  =   26.02   dB\n",
        "\n",
        "\n",
        "  (d)decibel  power  ratio  for  power  ratio  1/20  =   -13.01   dB"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 13, page no. 127</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "I2  =  0.020;#  in  ampere\n",
      "I1  =  0.005;#  in  ampere\n",
      "\n",
      "#calculation:\n",
      "X  =  20*math.log10(math.e)*math.log(I2/I1)\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  decibel  current  ratio  =  \",round(X,2),\"  dB\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  decibel  current  ratio  =   12.04   dB\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 14, page no. 128</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "rP  =  0.06;#  power  ratios  rP  =  P2/P1\n",
      "\n",
      "#calculation:\n",
      "X  =  10*math.log10(math.e)*math.log(rP)\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  decibel  Power  ratios  =  \",round(X,2),\"  dB\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  decibel  Power  ratios  =   -12.22   dB\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15, page no. 128</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "X  =  14;#  decibal  power  ratio  in  dB\n",
      "P1  =  0.008;#  in  Watt\n",
      "\n",
      "#calculation:\n",
      "rP  =  10**(X/10)\n",
      "P2  =  rP*P1\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  output  power  P2  =  \",round(P2,2),\"  W\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  output  power  P2  =   0.2   W"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 16, page no. 128</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "X  =  27;#  Voltage  gain  in  decibels\n",
      "V2  =  4;#  output  voltage  in  Volts\n",
      "\n",
      "#calculation:\n",
      "V1  =  V2/(10**(27/20))\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  input  Voltage  V1  =  \",round(V1,2),\"  V\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  input  Voltage  V1  =   0.18   V"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 17, page no. 129</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "R2  =  100;#  in  ohms\n",
      "R3  =  400;#  in  ohms\n",
      "R4  =  10;#  in  ohms\n",
      "\n",
      "#calculation:\n",
      "R1  =  R2*R3/R4\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n unknown  resistance,  R1  =  \",R1,\"  Ohms\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        " unknown  resistance,  R1  =   4000.0   Ohms"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 18, page no. 130</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "E1  =  1.0186;#  in  Volts\n",
      "l1  =  0.400;#  in  m\n",
      "l2  =  0.650;#  in  m\n",
      "\n",
      "#calculation:\n",
      "E2  =  (l2/l1)*E1\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  the  e.m.f.  of  a  dry  cell  =  \",round(E2,2),\"  Volts\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  the  e.m.f.  of  a  dry  cell  =   1.66   Volts"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 19, page no. 132</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "I  =  0.0025;#  in  Amperes\n",
      "R  =  5000;#  in  ohms\n",
      "e1  =  0.4;#  in  %\n",
      "e2  =  0.5;#  in  %\n",
      "\n",
      "#calculation:\n",
      "V  =  I*R\n",
      "em  =  e1  +  e2\n",
      "Ve  =  em*V/100\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  voltage  V  =  \",V,\"V(+-)\",Ve,\"V\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  voltage  V  =   12.5 V(+-) 0.1125 V"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 20, page no. 132</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "I  =  6.25;#  in  Amperes\n",
      "Im  =  10;#  max  in  Amperes\n",
      "V  =  36.5;#  in  volts\n",
      "Vm  =  50;#  max  in  volts\n",
      "e  =  2;#  in  %\n",
      "\n",
      "#calculation:\n",
      "R  =  V/I\n",
      "Ve  =  e*Vm/100  \n",
      "Ve1  =  Ve*100/V#  in    %\n",
      "Ie  =  e*Im/100\n",
      "Ie1  =  Ie*100/I#  in  %\n",
      "em  =  Ve1  +  Ie1\n",
      "Re  =  em*R/100\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  Resistance  R  =  \",R,\"  ohms(+-)\",Re,\"  ohms\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  Resistance  R  =   5.84   ohms(+-) 0.34688   ohms"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 21, page no. 133</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "R1  =  1000;#  in  ohms\n",
      "R2  =  100;#  in  ohms\n",
      "R3  =  432.5;#  in  ohms\n",
      "e1  =  1;#  in  %\n",
      "e2  =  0.5;#  in  %\n",
      "e3  =  0.2;#  in  %\n",
      "\n",
      "#calculation:\n",
      "Rx  =  R2*R3/R1\n",
      "em  =  e1  +  e2  +  e3\n",
      "Re  =  em*Rx/100\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  Resistance  R  =  \",Rx,\"  ohms(+-)\",Re,\"  ohms\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  Resistance  R  =   43.25   ohms(+-) 0.73525   ohms"
       ]
      }
     ],
     "prompt_number": 21
    }
   ],
   "metadata": {}
  }
 ]
}