"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Determine the current flowing in the conductor when \n",
"#(a) its ends are open-circuited, \n",
"#(b) its ends are connected to a load of 20 ohm resistance.\n",
"from __future__ import division\n",
"import math\n",
"#initializing the variables:\n",
"l = 0.3;# in m\n",
"v = 4;# in m/s\n",
"B = 1.25;# in Tesla\n",
"R = 20;# in ohms\n",
"u0 = 4*math.pi*1E-7;\n",
"\n",
"#calculation:\n",
"E = B*l*v\n",
"I2 = E/R\n",
"\n",
"#Results\n",
"print \"\\n\\nResult\\n\\n\"\n",
"print \"\\n (a)If the ends of the conductor are open circuited \"\n",
"print \"no current will flow even though \",E,\" V has been induced.\\n\"\n",
"print \"\\n (b)From Ohms law, I = \",I2,\" Ampere\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
"Result\n",
"\n",
"\n",
"\n",
" (a)If the ends of the conductor are open circuited no current will flow even though 1.5 V has been induced.\n",
"\n",
"\n",
" (b)From Ohms law, I = 0.075 Ampere"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 2, page no. 103
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#At what velocity must a conductor 75 mm long cut a magnetic field of flux density 0.6 T\n",
"from __future__ import division\n",
"import math\n",
"#initializing the variables:\n",
"l = 0.075;# in m\n",
"E = 9;# in Volts\n",
"B = 0.6;# in Tesla\n",
"R = 20;# in ohms\n",
"u0 = 4*math.pi*1E-7;\n",
"\n",
"#calculation:\n",
"v = E/(B*l)\n",
"\n",
"#Results\n",
"print \"\\n\\nResult\\n\\n\"\n",
"print \"\\n velocity v = \",v,\" m/s\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
"Result\n",
"\n",
"\n",
"\n",
" velocity v = 200.0 m/s"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 3, page no. 103
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#find the magnitude of the induced e.m.f. in each case.\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#initializing the variables:\n",
"l = 0.02;# in m\n",
"b = 0.02;# in m\n",
"v = 15;# in m/s\n",
"R = 20;# in ohms\n",
"Phi = 5E-6;# in Wb\n",
"u0 = 4*math.pi*1E-7;\n",
"a1 = 90;# in degrees\n",
"a2 = 60;# in degrees\n",
"a3 = 30;# in degrees\n",
"\n",
"#calculation:\n",
"A = l*b\n",
"B = Phi/A\n",
"E90 = B*l*v*math.sin(a1*math.pi/180)\n",
"E60 = B*l*v*math.sin(a2*math.pi/180)\n",
"E30 = B*l*v*math.sin(a3*math.pi/180)\n",
"\n",
"#Results\n",
"print \"\\n\\nResult\\n\\n\"\n",
"print \"\\n Induced e.m.f. at angles 90\u00b0, 60\u00b0, 30\u00b0 are \",(E90/1E-3),\" V, \",round((E60/1E-3),2),\" V, \"\n",
"print \"(E30/1E-3),\" V respectively\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
"Result\n",
"\n",
"\n",
"\n",
" Induced e.m.f. at angles 90\u00c2\u00b0, 60\u00c2\u00b0, 30\u00c2\u00b0 are 3.75 V, 3.25 V, 1.875 V respectively"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"