{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 9: Electromagnetic induction

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 102

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the current flowing in the conductor when \n", "#(a) its ends are open-circuited, \n", "#(b) its ends are connected to a load of 20 ohm resistance.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "l = 0.3;# in m\n", "v = 4;# in m/s\n", "B = 1.25;# in Tesla\n", "R = 20;# in ohms\n", "u0 = 4*math.pi*1E-7;\n", "\n", "#calculation:\n", "E = B*l*v\n", "I2 = E/R\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)If the ends of the conductor are open circuited \"\n", "print \"no current will flow even though \",E,\" V has been induced.\\n\"\n", "print \"\\n (b)From Ohms law, I = \",I2,\" Ampere\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)If the ends of the conductor are open circuited no current will flow even though 1.5 V has been induced.\n", "\n", "\n", " (b)From Ohms law, I = 0.075 Ampere" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 103

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#At what velocity must a conductor 75 mm long cut a magnetic field of flux density 0.6 T\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "l = 0.075;# in m\n", "E = 9;# in Volts\n", "B = 0.6;# in Tesla\n", "R = 20;# in ohms\n", "u0 = 4*math.pi*1E-7;\n", "\n", "#calculation:\n", "v = E/(B*l)\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n velocity v = \",v,\" m/s\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " velocity v = 200.0 m/s" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 103

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find the magnitude of the induced e.m.f. in each case.\n", "from __future__ import division\n", "import math\n", "\n", "#initializing the variables:\n", "l = 0.02;# in m\n", "b = 0.02;# in m\n", "v = 15;# in m/s\n", "R = 20;# in ohms\n", "Phi = 5E-6;# in Wb\n", "u0 = 4*math.pi*1E-7;\n", "a1 = 90;# in degrees\n", "a2 = 60;# in degrees\n", "a3 = 30;# in degrees\n", "\n", "#calculation:\n", "A = l*b\n", "B = Phi/A\n", "E90 = B*l*v*math.sin(a1*math.pi/180)\n", "E60 = B*l*v*math.sin(a2*math.pi/180)\n", "E30 = B*l*v*math.sin(a3*math.pi/180)\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Induced e.m.f. at angles 90\u00b0, 60\u00b0, 30\u00b0 are \",(E90/1E-3),\" V, \",round((E60/1E-3),2),\" V, \"\n", "print \"(E30/1E-3),\" V respectively\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Induced e.m.f. at angles 90\u00c2\u00b0, 60\u00c2\u00b0, 30\u00c2\u00b0 are 3.75 V, 3.25 V, 1.875 V respectively" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 103

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine the e.m.f. induced between its wing tips\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "s = 36;# in m\n", "v = 400;# in km/h\n", "u0 = 4*math.pi*1E-7;\n", "B = 40E-6;# in Tesla\n", "\n", "#calculation:\n", "v0 = v*5/18\n", "E = B*s*v0\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Induced e.m.f. = \",E,\" V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Induced e.m.f. = 0.16 V" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 105

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the e.m.f. induced in a coil\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "N = 200;# no. of turns\n", "dt = 0.050;# change of time in sec\n", "u0 = 4*math.pi*1E-7;\n", "dPhi = 0.025;# change of flux in Wb\n", "\n", "#calculation:\n", "E = -1*N*dPhi/dt\n", "\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Induced e.m.f. = \",E,\" V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Induced e.m.f. = -100.0 V" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 105

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find the average e.m.f. induced.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "N = 150;# no. of turns\n", "dt = 0.040;# change of time in sec\n", "u0 = 4*math.pi*1E-7;\n", "dPhi = 800E-6;# change of flux in Wb\n", "\n", "#calculation:\n", "#Since the flux reverses, the flux changes from C400 \u03bcWb to \u0003400 \u03bcWb, a total change of flux of 800 \u03bcWb\n", "E = -1*N*dPhi/dt\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Induced e.m.f. = \",E,\" V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Induced e.m.f. = -3.0 V" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8, page no. 105

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the e.m.f. induced in a coil\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "L = 12;# in Henry\n", "u0 = 4*math.pi*1E-7;\n", "dIdt = 4;# change of current with change in time in A/s\n", "\n", "#calculation:\n", "E = -1*L*dIdt\n", "\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Induced e.m.f. = \",E,\" V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Induced e.m.f. = -48 V" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 9, page no. 106

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find inductance of the coil.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "E = 1500;# in Volts\n", "dt = 0.008;# Change of time in sec\n", "dI = 4;# change of current in A/s\n", "\n", "#calculation:\n", "L = abs(E)*dt/dI\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n Inductance L= \",L,\" H\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " Inductance L= 3.0 H" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 10, page no. 107

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#How much energy is stored in the magnetic field of the inductor?\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "L = 8;# in Henry\n", "I = 3;# in Amperes\n", "\n", "#calculation:\n", "W = L*I*I/2\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n Energy stored, W = \",W,\" J\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " Energy stored, W = 36.0 J" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 11, page no. 107

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the coil inductance\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "I = 4;# in Amperes\n", "N = 800;#turns\n", "Phi = 0.005;# in Wb\n", "\n", "#calculation:\n", "L = N*Phi/I\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n Inductance L = \",L,\" H\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " Inductance L = 1.0 H" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 12, page no. 107

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate (a) the inductance of the coil, \n", "#(b) the energy stored in the magnetic field, and \n", "#(c) the average e.m.f. induced if the current falls to zero in 150 ms.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "I1 = 3;# in Amperes\n", "I2 = 0;# in Amperes\n", "dt = 0.150;# in secs\n", "N = 1500;#turns\n", "Phi = 0.025;# in Wb\n", "\n", "#calculation:\n", "L = N*Phi/I1\n", "W = L*I1*I1/2\n", "dI = I1 - I2\n", "E = -1*L*dI/dt\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Inductance L = \",L,\" H\\n\"\n", "print \"\\n (b)energy stored W = \",W,\" J\\n\"\n", "print \"\\n (c)e.m.f. induced = \",E,\" V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Inductance L = 12.5 H\n", "\n", "\n", " (b)energy stored W = 56.25 J\n", "\n", "\n", " (c)e.m.f. induced = -250.0 V" ] } ], "prompt_number": 11 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 13, page no. 108

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the flux linking the coil and the e.m.f. induced in the coil when the current collapses to zero in 20 ms\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "I1 = 2;# in Amperes\n", "I2 = 0;# in Amperes\n", "dt = 0.020;# in secs\n", "N = 750;#turns\n", "L = 3;# in Henry\n", "\n", "#calculation:\n", "Phi = L*I1/N\n", "dI = I1 - I2\n", "E = -1*L*dI/dt\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Flux = \",Phi,\" Wb\\n\"\n", "print \"\\n (b)e.m.f. induced = \",E,\" V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Flux = 0.008 Wb\n", "\n", "\n", " (b)e.m.f. induced = -300.0 V" ] } ], "prompt_number": 12 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 14, page no. 108

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the mutual inductance between two coils\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "dI1dt = 200;# change of current with change in time in A/s\n", "N = 2;# no. of coils\n", "E2 = 1.5;# in Volts\n", "\n", "#calculation:\n", "M = abs(E2)/dI1dt\n", "\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n mutual inductance, M = \", M,\" H\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " mutual inductance, M = 0.0075 H" ] } ], "prompt_number": 13 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 15, page no. 109

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the steady rate of change of current in one coil to induce an e.m.f. of 0.72 V in the other.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "M = 0.018;# in Henry\n", "N = 2;# no. of coils\n", "E2 = 0.72;# in Volts\n", "\n", "#calculation:\n", "dI1dt = abs(E2)/M\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n rate of change of current dI1/dt = \", dI1dt,\" A/s\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " rate of change of current dI1/dt = 40.0 A/s" ] } ], "prompt_number": 14 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 16, page no. 109

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate (a) the average induced e.m.f. in the second coil, \n", "#(b) the change of flux linked with the second coil if it is wound with 500 turns.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "M = 0.2;# in Henry\n", "I1 = 10;# in Amperes\n", "I2 = 4;# in Amperes\n", "dt = 0.010;# in secs\n", "N = 500;# turns\n", "\n", "#calculation:\n", "dI1dt = (I1 -I2)/dt \n", "E2 = -1*dI1dt*M\n", "dPhi = abs(E2)*dt/N\n", "\n", "#Results\n", "print \"\\n\\n Result \\n\\n\"\n", "print \"\\n (a)Induced e.m.f. E2 = \", E2,\" V\\n\"\n", "print \"\\n (b)change of flux = \", dPhi,\" Wb\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Result \n", "\n", "\n", "\n", " (a)Induced e.m.f. E2 = -120.0 V\n", "\n", "\n", " (b)change of flux = 0.0024 Wb" ] } ], "prompt_number": 15 } ], "metadata": {} } ] }