"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate how long the capacitor can provide an average discharge current of 2 mA.\n",
"from __future__ import division\n",
"import math\n",
"#initializing the variables:\n",
"I = 2E-3;# in amperes\n",
"C = 5E-6;# in Farad\n",
"V = 800;# in volts\n",
"\n",
"#calculation:\n",
"Q = C*V\n",
"t = Q/I\n",
"\n",
"#Results\n",
"print \"\\n\\nResult\\n\\n\"\n",
"print \"\\n capacitor can provide an average discharge current for \",t,\" Sec\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
"Result\n",
"\n",
"\n",
"\n",
" capacitor can provide an average discharge current for 2.0 Sec"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 4, page no. 60
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate the electric flux density.\n",
"#determine the electric field strength.\n",
"from __future__ import division\n",
"import math\n",
"#initializing the variables:\n",
"Q = 0.2E-6;# in Coulomb\n",
"A = 800E-4;# in m2\n",
"d = 0.005;# in m\n",
"V = 250;# in Volts\n",
"\n",
"#calculation:\n",
"D = Q/A\n",
"E = V/d\n",
"\n",
"#Results\n",
"print \"\\n\\nResult\\n\\n\"\n",
"print \"\\n (a)Electric flux density D \",(D/1E-6),\" uC/m2\\n\"\n",
"print \"\\n (b)Electric field strength E \",(E/1000),\" kV/m\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
"Result\n",
"\n",
"\n",
"\n",
" (a)Electric flux density D 2.5 uC/m2\n",
"\n",
"\n",
" (b)Electric field strength E 50.0 kV/m"
]
}
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 5, page no. 60
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Find the voltage gradient between the plates.\n",
"from __future__ import division\n",
"import math\n",
"#initializing the variables:\n",
"D = 2E-6;# in micro-C/m2\n",
"e0 = 8.85E-12;# in F/m\n",
"er = 5;\n",
"\n",
"#calculation:\n",
"E = D/(e0*er)\n",
"\n",
"#Results\n",
"print \"\\n\\nResult\\n\\n\"\n",
"print \"\\n Electric field strength E \",round((E/1000),2),\" kV/m\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
"Result\n",
"\n",
"\n",
"\n",
" Electric field strength E 45.2 kV/m"
]
}
],
"prompt_number": 6
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 6, page no. 60
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#What is the electric field strength?\n",
"#Find also the flux density when the dielectric between the plates is\n",
"#(a) air, and (b) polythene of relative permittivity 2.3\n",
"from __future__ import division\n",
"import math\n",
"#initializing the variables:\n",
"d = 0.8E-3;# in m\n",
"e0 = 8.85E-12;# in F/m\n",
"era = 1;# for air\n",
"erp = 2.3;# for polythene\n",
"V =200;# in Volts\n",
"\n",
"#calculation:\n",
"E = V/d\n",
"#for air\n",
"Da = E*e0*era\n",
"#for polythene\n",
"Dp = E*e0*erp\n",
"\n",
"#Results\n",
"print \"\\n\\nResult\\n\\n\"\n",
"print \"\\n (a)Electric flux density for air \",round((Da/1E-6),2),\" micro-C/m2\\n\"\n",
"print \"\\n (b)Electric flux density for polythene \",round((Dp/1E-6),2),\" micro-C/m2\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
"Result\n",
"\n",
"\n",
"\n",
" (a)Electric flux density for air 2.21 micro-C/m2\n",
"\n",
"\n",
" (b)Electric flux density for polythene 5.09 micro-C/m2"
]
}
],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 7, page no. 62
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a)Calculate the capacitance of the capacitor in picofarads. \n",
"#(b)what will be the pd between the plates?\n",
"from __future__ import division\n",
"import math\n",
"#initializing the variables:\n",
"A = 4E-4;# in m2\n",
"d = 0.1E-3;# in m\n",
"e0 = 8.85E-12;# in F/m\n",
"er = 100;\n",
"Q = 1.2E-6;# in coulomb\n",
"\n",
"#calculation:\n",
"C = e0*er*A/d\n",
"V = Q/C\n",
"\n",
"#Results\n",
"print \"\\n\\nResult\\n\\n\"\n",
"print \"\\n (a)Capacitance \",(C/1E-12),\" pF\\n\"\n",
"print \"\\n (b)P.d.= \",round(V,2),\" Volts(V)\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
"Result\n",
"\n",
"\n",
"\n",
" (a)Capacitance 3540.0 pF\n",
"\n",
"\n",
" (b)P.d.= 338.98 Volts(V)"
]
}
],
"prompt_number": 9
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 8, page no. 62
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine the effective thickness of the paper if its relative permittivity is 2.5\n",
"from __future__ import division\n",
"import math\n",
"#initializing the variables:\n",
"A = 800E-4;# in m2\n",
"C = 4425E-12;# in Farads\n",
"e0 = 8.85E-12;# in F/m\n",
"er = 2.5;\n",
"\n",
"#calculation:\n",
"d = e0*er*A/C\n",
"\n",
"#Results\n",
"print \"\\n\\nResult\\n\\n\"\n",
"print \"\\n Thickness \",(d/1E-3),\" mm\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
"Result\n",
"\n",
"\n",
"\n",
" Thickness 0.4 mm"
]
}
],
"prompt_number": 10
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"