{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 6: Capacitors and capacitance

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 58

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#(a) Determine the p.d. across a 4 \u03bcF capacitor when charged with 5 mC.\n", "# (b) Find the charge on a 50 pF capacitor when the voltage applied to it is 2 kV.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C1 = 4E-6;# in Farad\n", "C2 = 50E-12;# in Farad\n", "Q1 = 5E-3;# in Coulomb\n", "V2 = 2000;# in volts\n", "\n", "#calculation:\n", "V1 = Q1/C1\n", "Q2 = C2*V2\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)P.d \",V1,\" Volts(V)\\n\"\n", "print \"\\n (b)Charge(Q) \",(Q2/1E-6),\" micro-Coulomb\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)P.d 1250.0 Volts(V)\n", "\n", "\n", " (b)Charge(Q) 0.1 micro-Coulomb" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 58

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine the pd between the plates.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "I = 4;# in amperes\n", "C = 20E-6;# in Farad\n", "t = 3E-3;# in sec\n", "\n", "#calculation:\n", "Q = I*t\n", "V = Q/C\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)P.d \",V,\" Volts(V)\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)P.d 600.0 Volts(V)" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 59

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate how long the capacitor can provide an average discharge current of 2 mA.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "I = 2E-3;# in amperes\n", "C = 5E-6;# in Farad\n", "V = 800;# in volts\n", "\n", "#calculation:\n", "Q = C*V\n", "t = Q/I\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n capacitor can provide an average discharge current for \",t,\" Sec\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " capacitor can provide an average discharge current for 2.0 Sec" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 60

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the electric flux density.\n", "#determine the electric field strength.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Q = 0.2E-6;# in Coulomb\n", "A = 800E-4;# in m2\n", "d = 0.005;# in m\n", "V = 250;# in Volts\n", "\n", "#calculation:\n", "D = Q/A\n", "E = V/d\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Electric flux density D \",(D/1E-6),\" uC/m2\\n\"\n", "print \"\\n (b)Electric field strength E \",(E/1000),\" kV/m\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)Electric flux density D 2.5 uC/m2\n", "\n", "\n", " (b)Electric field strength E 50.0 kV/m" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 60

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find the voltage gradient between the plates.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "D = 2E-6;# in micro-C/m2\n", "e0 = 8.85E-12;# in F/m\n", "er = 5;\n", "\n", "#calculation:\n", "E = D/(e0*er)\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Electric field strength E \",round((E/1000),2),\" kV/m\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Electric field strength E 45.2 kV/m" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 60

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#What is the electric field strength?\n", "#Find also the flux density when the dielectric between the plates is\n", "#(a) air, and (b) polythene of relative permittivity 2.3\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "d = 0.8E-3;# in m\n", "e0 = 8.85E-12;# in F/m\n", "era = 1;# for air\n", "erp = 2.3;# for polythene\n", "V =200;# in Volts\n", "\n", "#calculation:\n", "E = V/d\n", "#for air\n", "Da = E*e0*era\n", "#for polythene\n", "Dp = E*e0*erp\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Electric flux density for air \",round((Da/1E-6),2),\" micro-C/m2\\n\"\n", "print \"\\n (b)Electric flux density for polythene \",round((Dp/1E-6),2),\" micro-C/m2\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)Electric flux density for air 2.21 micro-C/m2\n", "\n", "\n", " (b)Electric flux density for polythene 5.09 micro-C/m2" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 62

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#(a)Calculate the capacitance of the capacitor in picofarads. \n", "#(b)what will be the pd between the plates?\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "A = 4E-4;# in m2\n", "d = 0.1E-3;# in m\n", "e0 = 8.85E-12;# in F/m\n", "er = 100;\n", "Q = 1.2E-6;# in coulomb\n", "\n", "#calculation:\n", "C = e0*er*A/d\n", "V = Q/C\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Capacitance \",(C/1E-12),\" pF\\n\"\n", "print \"\\n (b)P.d.= \",round(V,2),\" Volts(V)\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)Capacitance 3540.0 pF\n", "\n", "\n", " (b)P.d.= 338.98 Volts(V)" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8, page no. 62

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine the effective thickness of the paper if its relative permittivity is 2.5\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "A = 800E-4;# in m2\n", "C = 4425E-12;# in Farads\n", "e0 = 8.85E-12;# in F/m\n", "er = 2.5;\n", "\n", "#calculation:\n", "d = e0*er*A/C\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Thickness \",(d/1E-3),\" mm\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Thickness 0.4 mm" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 9, page no. 62

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the capacitance of the capacitor.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "n = 19;# no. of plates\n", "L = 75E-3;# in m\n", "B = 75E-3;# in m\n", "d = 0.2E-3;# in m\n", "e0 = 8.85E-12;# in F/m\n", "er = 5;\n", "#calculation:\n", "A = L*B\n", "C = e0*er*A*(n-1)/d\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Capacitance \",round((C/1E-9),2),\" nF\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Capacitance 22.4 nF" ] } ], "prompt_number": 11 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 10, page no. 65

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the equivalent capacitance of two capacitors of 6 \u03bcF and 4 \u03bcF connected (a) in parallel and (b) in series\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C1 = 6E-6;# in Farads\n", "C2 = 4E-6;# in Farads\n", "\n", "#calculation:\n", "# in Parallel\n", "Cp = C1 + C2\n", "# in Series\n", "Cs = 1/((1/C1) + (1/C2))\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Capacitance in parallel \",(Cp/1E-6),\" uF\\n\"\n", "print \"\\n (b)Capacitance in Series \",(Cs/1E-6),\" uF\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)Capacitance in parallel 10.0 uF\n", "\n", "\n", " (b)Capacitance in Series 2.4 uF" ] } ], "prompt_number": 12 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 11, page no. 65

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#What capacitance must be connected in series\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C1 = 30E-6;# in Farads\n", "Cs = 12E-6;# in Farads\n", "\n", "#calculation:\n", "# in Series\n", "C2 = 1/((1/Cs) - (1/C1))\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Capacitance in series \",(C2/1E-6),\" uF\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)Capacitance in series 20.0 uF" ] } ], "prompt_number": 13 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 12, page no. 65

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine (a) the equivalent circuit capacitance, \n", "#(b) the total charge and\n", "#(c) the charge on each capacitor\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C1 = 1E-6;# in Farads\n", "C2 = 3E-6;# in Farads\n", "C3 = 5E-6;# in Farads\n", "C4 = 6E-6;# in Farads\n", "Vt = 100;# in Volts\n", "\n", "#calculation:\n", "# in Parallel\n", "Cp = C1 + C2 + C3 + C4\n", "Qt = Vt*Cp\n", "Q1 = C1*Vt\n", "Q2 = C2*Vt\n", "Q3 = C3*Vt\n", "Q4 = C4*Vt\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Equivalent Capacitance in Parallel \",(Cp/1E-6),\" uF\\n\"\n", "print \"\\n (b)Total charge \",(Qt/1E-3),\" mC\\n\"\n", "print \"\\n (c)Charge on each capacitors (C1, C2, C3, C4)\\n \",(Q1/1E-3),\", \",(Q2/1E-3),\", \"\n", "print \",(Q3/1E-3),\", \",(Q4/1E-3),\" mC respectively\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (, line 27)", "output_type": "pyerr", "traceback": [ "\u001b[1;36m File \u001b[1;32m\"\"\u001b[1;36m, line \u001b[1;32m27\u001b[0m\n\u001b[1;33m print \",(Q3/1E-3),\", \",(Q4/1E-3),\" mC respectively\\n\"\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 13, page no. 66

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate (a) the equivalent circuit capacitance, \n", "#(b) the charge on each capacitor and\n", "#(c) the pd across each capacitor.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C1 = 3E-6;# in Farads\n", "C2 = 6E-6;# in Farads\n", "C3 = 12E-6;# in Farads\n", "Vt = 350;# in Volts\n", "#calculation:\n", "# in series\n", "Cs = 1/((1/C1) + (1/C2) + (1/C3))\n", "Qt = Vt*Cs\n", "V1 = Qt/C1\n", "V2 = Qt/C2\n", "V3 = Qt/C3\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Equivalent Capacitance in Series \",(Cs/1E-6),\" uF\\n\"\n", "print \"\\n (b)Charge on each capacitors (C1, C2, C3) \",(Qt/1E-3),\" mC \\n\"\n", "print \"\\n (b)P.d Across each capacitors (C1, C2, C3)\\n \",V1,\" V, \", V2,\" V, \", V3,\" V respectively\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)Equivalent Capacitance in Series 1.71428571429 uF\n", "\n", "\n", " (b)Charge on each capacitors (C1, C2, C3) 0.6 mC \n", "\n", "\n", " (b)P.d Across each capacitors (C1, C2, C3)\n", " 200.0 V, 100.0 V, 50.0 V respectively" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 14, page no. 67

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find (a) the thickness of the mica needed, and \n", "#(b) the area of a plate assuming a two-plate construction.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C = 0.2E-6;# in Farads\n", "V = 1250;# in Volts\n", "E = 50E6# in V/m\n", "e0 = 8.85E-12;# in F/m\n", "er = 6;\n", "\n", "#calculation:\n", "d = V/E\n", "A = C*d/e0/er\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Thickness \",(d/1E-3),\" mm\\n\"\n", "print \"\\n (b)Area of plate is \",round((A/1E-4),2),\" cm^2 \\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)Thickness 0.025 mm\n", "\n", "\n", " (b)Area of plate is 941.62 cm^2 " ] } ], "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 15, page no. 68

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#(a) Determine the energy stored in a 3 \u03bcF capacitor when charged to 400 V.\n", "#(b) Find also the average power developed if this energy is dissipated in a time of 10 \u03bcs\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C = 3E-6;# in Farads\n", "V = 400;# in Volts\n", "t = 10E-6;# in secs\n", "\n", "#calculation:\n", "W = C*V*V/2\n", "P = W/t\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Energy stored \",W,\" J\\n\"\n", "print \"\\n (b)Power developed \",(P/1E3),\" kW \\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)Energy stored 0.24 J\n", "\n", "\n", " (b)Power developed 24.0 kW " ] } ], "prompt_number": 17 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 16, page no. 68

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find the pd to which the capacitor must be charged.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "C = 12E-6;# in Farads\n", "W = 4;# in Joules\n", "\n", "#calculation:\n", "V = (2*W/C)**0.5\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n P.d \",round(V,2),\" V\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " P.d 816.5 V" ] } ], "prompt_number": 18 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 17, page no. 68

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find (a) the voltage and (b) the capacitance.\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "W = 1.2;# in Joules\n", "Q = 10E-3;# in Coulomb\n", "\n", "#calculation:\n", "V = 2*W/Q\n", "C = Q/V\n", "\n", "#Results\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)P.d \",V,\" V\\n\"\n", "print \"\\n (b)Capacitance \",round((C/1E-6),2),\" uF\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)P.d 240.0 V\n", "\n", "\n", " (b)Capacitance 41.67 uF" ] } ], "prompt_number": 19 } ], "metadata": {} } ] }