{ "metadata": { "name": "", "signature": "sha256:71ce76d6b0eac06e2f6805ff014d728113603c794f739fe4a09502555869f752" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 5: Series and parallel\n", "networks

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 43

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "V1 = 5; # in volts\n", "V2 = 2; # in volts\n", "V3 = 6; # in volts\n", "I = 4; # in Amperes\n", "\n", "#calculation:\n", "Vt = V1 + V2 + V3\n", "Rt = Vt/I\n", "R1 = V1/I\n", "R2 = V2/I\n", "R3 = V3/I\n", "\n", "#results\n", "print \"(a) Total Voltage\", Vt,\"Volts(V)\"\n", "print \"(b)Total Resistance\", Rt,\"Ohms\"\n", "print \"(c)Resistance(R1)\", R1,\"Ohms; Resistance(R2)\", R2,\"Ohms and\"\n", "print \"Resistance(R3)\", R3,\"Ohms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Total Voltage 13 Volts(V)\n", "(b)Total Resistance 3.25 Ohms\n", "(c)Resistance(R1) 1.25 Ohms; Resistance(R2) 0.5 Ohms and\n", "Resistance(R3) 1.5 Ohms" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 43

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "V1 = 10; # in volts\n", "V2 = 4; # in volts\n", "Vt = 25; # in volts\n", "Rt = 100; # in ohms\n", "\n", "#calculation:\n", "V3 = Vt - V1 - V2\n", "I = Vt/Rt\n", "R2 = V2/I\n", "\n", "#results\n", "print \"(a)Voltage(V3)\", V3,\"Volts(V)\"\n", "print \"(b)current\", I,\"Amperes(A)\"\n", "print \"(c)Resistance(R2)\", R2,\"Ohms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Voltage(V3) 11 Volts(V)\n", "(b)current 0.25 Amperes(A)\n", "(c)Resistance(R2) 16.0 Ohms" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 44

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "Vt = 12; # in volts\n", "R1 = 4; # in ohms\n", "R2 = 9; # in ohms\n", "R3 = 11; # in ohms\n", "\n", "#calculation:\n", "Rt = R1 + R2 + R3\n", "I = Vt/Rt\n", "V9 = I*R2\n", "P11 = I*I*R3\n", "#results\n", "print \"a)current\", I,\"Amperes(A)\\n\"\n", "print \"b)Voltage(V2)\", V9,\"Volts(V)\\n\"\n", "print \"c)Power\", P11,\"Watt(W)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)current 0.5 Amperes(A)\n", "\n", "b)Voltage(V2) 4.5 Volts(V)\n", "\n", "c)Power 2.75 Watt(W)" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 44

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "Vt = 50; # in volts\n", "R1 = 4; # in ohms\n", "R2 = 6; # in ohms\n", "\n", "#calculation:\n", "Rt = R1 + R2\n", "I = Vt/Rt\n", "V2 = I*R2\n", "\n", "#results\n", "print \"Voltage(V)\", V2,\"Volts(V)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage(V) 30.0 Volts(V)" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 45

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "Vt = 24; # in volts\n", "R1 = 2; # in ohms\n", "I = 3; # in Amperes\n", "t = 50; # in hrs\n", "\n", "#calculation:\n", "V1 = I*R1\n", "R2 = (Vt-(I*R1))/I\n", "E = Vt*I*t\n", "\n", "#results\n", "print \"a)Voltage(V1)\", V1,\"Volts(V)\\n\"\n", "print \"b)Resistance(R2)\", R2,\"Ohms\\n\"\n", "print \"c)Energy(E)\", E/1000,\"kWh\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)Voltage(V1) 6 Volts(V)\n", "\n", "b)Resistance(R2) 6.0 Ohms\n", "\n", "c)Energy(E) 3.6 kWh" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 46

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "R1 = 5; # in ohms\n", "R3 = 20; # in ohms\n", "I1 = 8; # in Amperes\n", "It = 11; # in Amperes\n", "\n", "#calculation:\n", "Vt = I1*R1\n", "I3 = Vt/R3\n", "R2 = Vt/(It - I1 - I3)\n", "\n", "#results\n", "print \"a)Ammeter Reading\", I3,\"Amperes(A)\\n\"\n", "print \"b)Resistance(R2)\", R2,\"Ohms\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)Ammeter Reading 2.0 Amperes(A)\n", "\n", "b)Resistance(R2) 40.0 Ohms" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 46

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "R1 = 3; # in ohms\n", "R2 = 6; # in ohms\n", "Vt = 12; # in volts\n", "\n", "#calculation:\n", "Rt = R1*R2/(R1 + R2)\n", "I1 = (Vt/R1)\n", "\n", "#Result\n", "print \"(a)Total Resistance\", Rt,\"Ohms\\n\"\n", "print \"(b)Current(I1)\", I1,\"Amperes(A)\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Total Resistance 2.0 Ohms\n", "\n", "(b)Current(I1) 4.0 Amperes(A)" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8, page no. 47

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R1 = 10;# in ohms\n", "R2 = 20;# in ohms\n", "R3 = 60;# in ohms\n", "I2 = 3;# in Amperes\n", "\n", "#calculation:\n", "Vt = I2*R2\n", "I1 = Vt/R1\n", "I3 = Vt/R3\n", "I = I1 +I2 + I3\n", "\n", "print \"\\nResult\\n\"\n", "print \"\\n(a)Voltage(V) \",Vt,\" Volts(V)\\n\"\n", "print \"\\n(b)Total Current(I) \",I,\" Amperes(A)\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Result\n", "\n", "\n", "(a)Voltage(V) 60 Volts(V)\n", "\n", "\n", "(b)Total Current(I) 10.0 Amperes(A)" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 9, page no. 47

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R = 1;# in ohms\n", "\n", "#calculation\n", "R1 = 1/(1/R + 1/R + 1/R + 1/R)\n", "R2 = 2*R*2*R/(4*R)\n", "R3 = 1/(1/R + 1/R + 1/R) + 1\n", "R4 = R*R/(2*R) + 2*R\n", "\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n(a)All four in parallel for \",R1,\" ohm\\n\"\n", "print \"\\n(b)Two in series, in parallel with another two in series for\",R2,\" ohm\\n\"\n", "print \"\\n(c)Three in parallel, in series with one for \",round(R3,2),\" ohm\\n\"\n", "print \"\\n(d)Two in parallel, in series with two in series for \",R4,\" ohm\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", "(a)All four in parallel for 0.25 ohm\n", "\n", "\n", "(b)Two in series, in parallel with another two in series for 1.0 ohm\n", "\n", "\n", "(c)Three in parallel, in series with one for 1.33 ohm\n", "\n", "\n", "(d)Two in parallel, in series with two in series for 2.5 ohm\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 10, page no. 48

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "R1 = 1;# in ohms\n", "R2 = 2.2;# in ohms\n", "R3 = 3;# in ohms\n", "R4 = 6;# in ohms\n", "R5 = 18;# in ohms\n", "R6 = 4;# in ohms\n", "\n", "\n", "#calculation:\n", "R0 = 1/((1/3) + (1/6) + (1/18))\n", "Rt = R1 + R2 + R0 + R6\n", "\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Equivalent Resistance \",Rt,\" Ohms\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Equivalent Resistance 9.0 Ohms" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 11, page no. 48

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R1 = 2.5;# in ohms\n", "R2 = 6;# in ohms\n", "R3 = 2;# in ohms\n", "R4 = 4;# in ohms\n", "Vt = 200;# in volts\n", "\n", "#calculation:\n", "R0 = 1/((1/R2) + (1/R3))\n", "Rt = R1 + R0 + R4\n", "It = Vt/Rt\n", "I1 = It\n", "I4 = It\n", "I2 = R3*It/(R3+R2)\n", "I3 = It - I2\n", "V1 = I1*R1\n", "V2 = I2*R2\n", "V3 = I3*R3\n", "V4 = I4*R4\n", "\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Total Current Supply \",It,\" Amperes(A)\\n\"\n", "print \"\\n (b)Current through resistors (R1, R2, R3, R4)\\n \",I1,\", \", I2,\", \", I3,\", \", I4,\" Amperes(A) respectively\\n\"\n", "print \"\\n (c)voltage across resistors (R1, R2, R3, R4)\\n \",V1,\", \", V2,\", \", V3,\", \", V4,\" Volts(V) respectively\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)Total Current Supply 25.0 Amperes(A)\n", "\n", "\n", " (b)Current through resistors (R1, R2, R3, R4)\n", " 25.0 , 6.25 , 18.75 , 25.0 Amperes(A) respectively\n", "\n", "\n", " (c)voltage across resistors (R1, R2, R3, R4)\n", " 62.5 , 37.5 , 37.5 , 100.0 Volts(V) respectively" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 12, page no. 49

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R1 = 15;# in ohms\n", "R2 = 10;# in ohms\n", "R3 = 38;# in ohms\n", "Vt = 250;# in volts\n", "P = 2500;# in Watt\n", "\n", "#calculation:\n", "It = P/Vt\n", "I2 = R1*It/(R1+R2)\n", "I1 = It - I2\n", "Re1 = 1/((1/R1) + (1/R2))\n", "Rt = Vt/It\n", "Re2 = Rt - Re1\n", "Rx = 1/((1/Re2) - (1/R3))\n", "I4 = R3*It/(R3+Rx)\n", "I3 = It - I4\n", "\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n (a)Resistance (Rx) \",Rx,\" Ohms\\n\"\n", "print \"\\n (b)Current through resistors (R1, R2, R3, R4): \\n \",I1,\", \", I2,\", \", I3,\", \"\n", "print \", I4,\" Amperes(A) respectively\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " (a)Resistance (Rx) 38.0 Ohms\n", "\n", "\n", " (b)Current through resistors (R1, R2, R3, R4): \n", " 4.0 , 6.0 , 5.0 , 5.0 Amperes(A) respectively" ] } ], "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 13, page no. 51

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "R1 = 8;# in ohms\n", "R2 = 2;# in ohms\n", "R3 = 1.4;# in ohms\n", "R4 = 9;# in ohms\n", "R5 = 2;# in ohms\n", "Vt = 17;# in volts\n", "\n", "#calculation:\n", "R01 = R1*R2/(R1 + R2)\n", "R02 = R01 + R3\n", "R03 = R4*R02/(R4 +R02)\n", "Rt = R5 + R03\n", "It = Vt/Rt\n", "I1 = R4*It/(R4 + R02)\n", "Ix = R2*I1/(R1 + R2)\n", "\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Current(Ix) \",Ix,\" Amperes(A)\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Current(Ix) 0.6 Amperes(A)" ] } ], "prompt_number": 17 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 14, page no. 52

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "Rt = 150;# in ohms\n", "n = 3;# no. of identical lamp\n", "\n", "#calculation:\n", "R = Rt*3# (1/Rt)=(1/R)+(1/R)+(1/R)\n", "\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n Resistance \",R,\" Ohms\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " Resistance 450 Ohms" ] } ], "prompt_number": 18 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 15, page no. 52

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "#initializing the variables:\n", "#series connection\n", "n = 3;# no. of identical lamp\n", "Vt = 150;# in volts\n", "\n", "#calculation:\n", "V = Vt/3# Since each lamp is identical, then V volts across each.\n", "\n", "print \"\\n\\nResult\\n\\n\"\n", "print \"\\n a)Voltage across each resistor = \",V,\" Volts(V)\\n\"\n", "print \"\\n b)If lamp C fails, i.e., open circuits, no current will flow and lamps A and B will not operate.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "Result\n", "\n", "\n", "\n", " a)Voltage across each resistor = 50.0 Volts(V)\n", "\n", "\n", " b)If lamp C fails, i.e., open circuits, no current will flow and lamps A and B will not operate." ] } ], "prompt_number": 21 } ], "metadata": {} } ] }