{ "metadata": { "name": "", "signature": "sha256:132479673f217c6ad4667b69d4be561d4eafa6bd7e059501c289648667d366ed" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 1: Units Associated with Basic Electrical Quantities

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 1, page no. 4

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "I = 5; # in Ampere\n", "t = 120; # in sec\n", "\n", "#calculation:\n", "Q = I*t\n", "\n", "#results\n", "print \"Charge, Q = \", Q,\"coulomb(C)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Charge, Q = 600 coulomb(C)" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2, page no. 5

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "M = 5; # in Kg\n", "a = 2; # in m/s2\n", "\n", "#calculation:\n", "F = M*a\n", "\n", "#results\n", "print \"Force:\", F,\"Newton(N)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Force: 10 Newton(N)" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 3, page no. 5

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "M = 0.2; # in Kg\n", "g = 9.81; # in m/s2\n", "\n", "#calculation:\n", "F = M*g\n", "\n", "#results\n", "print \"Force:\", F,\"Newton(N)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Force: 1.962 Newton(N)" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 4, page no. 6

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "F = 200; # in Newton\n", "d = 20; # in m\n", "t = 25; # in sec\n", "\n", "#calculation:\n", "W = F*d\n", "P = W/t\n", "\n", "#results\n", "print \"Power:\", P,\"watt(W)\"\n", "print \"Work Done:\", W,\"Nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power: 160.0 watt(W)\n", "Work Done: 4000 Nm" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 5, page no. 6

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "M = 1000; # in Kg\n", "h = 10; # in m\n", "t = 20; # in sec\n", "g = 9.81 # in m/s2\n", "\n", "#calculation:\n", "W = M*g*h\n", "P = W/t\n", "\n", "#results\n", "print \"Work Done:\", W,\"Joule(J)\"\n", "print \"Power:\", P,\"watt(W)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work Done: 98100.0 Joule(J)\n", "Power: 4905.0 watt(W)" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 6, page no. 7

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "R1 = 10; # in ohm\n", "R2 = 5000; # in ohm\n", "R3 = 0.1; # in ohm\n", "#calculation:\n", "G1 = 1/R1\n", "G2 = 1/R2\n", "G3 = 1/R3\n", "\n", "#results\n", "print \"conductance(G1):\", G1,\"seimen(S)\"\n", "print \"conductance(G2):\", G2,\"seimen(S)\"\n", "print \"conductance(G3):\", G3,\"seimen(S)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "conductance(G1): 0.1 seimen(S)\n", "conductance(G2): 0.0002 seimen(S)\n", "conductance(G3): 10.0 seimen(S)" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 7, page no. 7

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "V = 5; # in Volts\n", "I = 3; # in Ampere\n", "t = 600; # in sec\n", "#calculation:\n", "P = V*I\n", "E = P*t\n", "\n", "#results\n", "print \"Energy(E):\", E,\"Joule(J)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy(E): 9000 Joule(J)" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 8, page no. 8

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "#initializing the variables:\n", "E = 18E5; # in Joule\n", "V = 250; # in Volts\n", "t = 1800; # in sec\n", "\n", "#calculation:\n", "P = E/t\n", "I = P/V\n", "\n", "#results\n", "print \"Power(P):\", P,\"Watt(W)\"\n", "print \"Current(I):\", I,\"Ampere(A)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power(P): 1000.0 Watt(W)\n", "Current(I): 4.0 Ampere(A)" ] } ], "prompt_number": 9 } ], "metadata": {} } ] }